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Exercise 6.6. Let K be a field of non-zero characteristic p.

1. Show that the mapping φ : K → K given by φ(a) = ap (a ∈ K) is
a monomorphism (called the Frobenius monomorphism). Show (a) that
this is an automorphism if the field is finite; (b) that φ is the identity map
if K = Zp.

1) The mapping φ(a) = ap (a ∈ K) is a monomorphism.

The map φ is a homomorphism by definition:

φ(ab) = (ab)p = apbp = φ(a)φ(b)

φ(a+ b) = (a+ b)p = ap + bp = φ(a) + φ(b)

The map φ is also injective by definition:

φ(a) = φ(b) ⇒ 0 = φ(a)− φ(b) = ap − bp = (a− b)p ⇒ a− b = 0

Thus φ is a monomorphism.

a) φ is an automorphism.

If F is finite, |φ(F )| = |F | ⇒ φ(F ) = F . Thus φ is an automorphism.

b) φ is the identity map if K = Zp.

The elements of Zp are Zp = {0, 1, 2, . . . , p − 1}. which can then written
as {0, 1, 1 + 1, 1 + 1 + 1, . . . , 1 + 1 + . . .+ 1p−1}.
We show that φ(0) = 0 and φ(1) = 1, and φ(1 + 1 + . . . + 1) = φ(1) +
φ(1) + . . .+ φ(1)p−1 = 1 + 1 + . . .+ 1p−1. So φ is the identity map.

2. Give an example of an infinite K where ϕ does not map onto K.

From previous HW1, we found an example of an infinite field with prime

characteristic, which is Fp(X) =
{

f
g | f, g ∈ Fp[x], g ̸= 0

}
. We let k to be

this field, and x be a non-constant monic polynomial. Then φ(x) = xp is
of degree p deg(x), but no polynomial of degree 1 to p− 1 is in the image
of φ.
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Exercise 7.2. Determine Aut(Q) and Aut(Zp).
As a first step, we observe that any automorphism of K must fix 0 and 1

(i.e., map 0 and 1 to themselves), and hence by a trivial induction must fix the
prime subfield of K.

Suppose, let φ ∈ Aut(Q). Then, φ(1) = 1 and φ(−1) = −1. This is because
any automorphism must preserve the identity element and the inverse element.
For all n ∈ N, φ(n) = n and similarly, φ(−n) = −n. This follows from the fact
that any rational number can be expressed as a sum of 1’s or −1’s. For m,n ∈ Z
and n ̸= 0, φ(mn ) = m

n . This is shown by breaking down m
n into φ(m) · φ(n)−1,

and since φ(m) = m and φ(n) = n, it simplifies to m
n .As a result, Aut(Q) is the

trivial group.
Suppose, let φ ∈ Aut(Zp). For any automorphism φ in Aut(Zp), it must

preserve the identity element, which is 1 in Zp. Therefore, φ(1) = 1. Similarly,
φ(−1) = −1, as φ must also preserve the inverse element of 1. For any nonzero
element a ∈ Zp, it generates the entire group Zp. Thus, any automorphism must
preserve the generators. So, φ(a) must also be a generator of Zp. Since every
element in Zp except for 0 is a generator, φ(a) can be any nonzero element in
Zp for any nonzero generator a. Hence, φ is completely determined by its action
on the nonzero elements of Zp. Given the nature of Zp, where every nonzero
element is a generator, the number of possible automorphisms is φ(p−1), where
φ is Euler’s totient function. φ(p− 1) counts the number of elements relatively
prime to p−1 in the range [1, p−1]. Thus, Aut(Zp) has φ(p−1) automorphisms.
So, the automorphism group of Zp, Aut(Zp), has φ(p−1) automorphisms, where
φ is Euler’s totient function.

Exercise 7.6. Describe the Galois group Gal(GF (8) : Z2).
The Galois group of the field extension GF(8), and Z2 is the group of auto-

morphisms of the field extension. So, GF(8) is the finite field with 8 elements
and Z2 is the field with 2 elements.

The field GF(8) can be represented as the splitting field of the polynomial
x3+x+1 over Z2. GF (8) is Z2[X]/(X3+X+1). The Galois group of x3+x+1
over Z2 has order 3, as the polynomial is irreducible over Z2 and hence has 3
distinct roots in its splitting field. Since the Galois group has order 3, it must
be isomorphic to Z3, the cyclic group of order 3.

If α = X + (X3 + X + 1), then we may write GF (8) as Z2(α), and the
elements of GF (8) are 0, 1, α, 1 + α, α2, 1 + α2, α+ α2, 1 + α+ α2. The powers
of α are given by:

n 1 2 3 4 5 6 7
αn α α2 1 + α α+ α2 1 + α+ α2 1 + α2 1

Since α3+α+1 = 0, it follows, by squaring, that α6+α2+1 = 0, and so α2

is also a root of X3 +X + 1. Squaring again, we see that α4 = α+ α2 is again
a root of X3 +X + 1. Any Z2-automorphism must map a root of X3 +X + 1
to another root. Accordingly, there are three elements in Gal(GF (8),Z2):

ι : α 7→ α, ϕ : α 7→ α2, ψ : α 7→ α+ α2,
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and the multiplication table is:

· ι ϕ ψ
ι ι ϕ ψ
ϕ ϕ ψ ι
ψ ψ ι ϕ

Exercise 7.7. Let L be a normal extension of a fieldK, and let E be a subfield
of L containing K. Show that L is a normal extension of E.

By Theorem 7.13, A finite extension L of a field K is normal if and only
if it is a splitting field for some polynomial in K[X]. Therefore, since L is a
normal extension of K, it is a splitting field for some polynomial f in K[X].
Since f ∈ E[X], we conclude that L is a normal extension of E.

5. Prove that if p is prime, then the Galois group of Q(ω) over Q is cyclic of

order p − 1, where ω = e
2πi
p . (Optional: Generalize to the case when p is not

prime.)

The complex number ω = e
2πi
p is a root of the polynomial f(x) = xp − 1.

This can be seen by noticing that ωp =
(
e

2πi
p

)p

= e2πi = 1.

We show that all the roots of f(x) = xp − 1 are different, we can look at the
derivative f ′(x):

f ′(x) = p · xp−1

Since p is prime, f ′(x) has no common factors with f(x). Therefore, f(x)
has no repeated roots, and all its roots are distinct.

Let’s observe (ωk)p:

(ω)p = e2πi·
kp
p = e2πik

Since e2πik represents the rotations on the complex plane, (ωk)p = 1 for all
integers k.Now, since all the roots of f(x) are distinct and ωk for k = 1, 2, ..., p−1
are p − 1 distinct roots of f(x), the degree of the extension Q(ω) : Q is p − 1.
Also, since ω generates all the roots of f(x), Q(ω) is the splitting field of f(x)
over Q. Since ω satisfies xp − 1 = 0 and generates the extension, Q(ω) is
cyclic.Therefore, [Q(ω) : Q] = p− 1, Q(ω) is the splitting field of f(x) over the
rationals, and the extension is cyclic.

6.

(a) Let K be a finite field. Show that K is a simple extension of Zp.

The following requires two properties:

1. A finite field of order q exists if and only if q is a prime power pk, where
p is prime and k is a positive integer.

2. Finite fields of the same order are isomorphic to each other.
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Since K is a finite field, it has order pn for some positive integer n.

Let α be an element inK that is not in Zp. Such an element exists because
if K were the same as Zp, then K wouldn’t be a field (as the characteristic
of K would be zero, not p). Consider the subfield of K generated by α
and Zp, denoted Zp(α). Since K is finite, Zp(α) must also be finite. Now,
Zp(α) is a field containing α and Zp, so it contains all polynomials in α
with coefficients in Zp. Thus, Zp(α) contains at least p

n distinct elements
(since each polynomial of degree less than n generates a distinct element
in K). But since Zp(α) is a field of order pm for some m ≤ n (the degree
of the minimal polynomial of α over Zp divides n), it must contain exactly
pm elements. Hence, m = n and Zp(α) is actually all of K. Therefore, K
is a simple extension of Zp generated by α.

(b) Prove that there exists a prime number p and an irreducible polynomial
f ∈ Zp[x] such that K ∼= Zp[x]/(f).

In Zp[x], which is a Euclidean domain, we can perform polynomial division.
So, for any polynomial q(x), there exist polynomials a(x) and r(x) such
that q(x) = a(x)f(x) + r(x), where f(x) is a fixed polynomial (let’s say
irreducible) and r(x) has degree less than n, the degree of f(x). This
means that when we divide q(x) by f(x), we obtain a quotient a(x) and
a remainder r(x), with r(x) being unique.

Now, in the quotient ring Zp[x]/(f(x)), we’re essentially considering all
polynomials in Zp[x] modulo the ideal generated by f(x). The elements
of this quotient ring are equivalence classes of polynomials, where two
polynomials are considered equivalent if their difference is divisible by
f(x).

The number of elements in Zp[x]/(f(x)) corresponds to the number of
polynomials in Zp[x] whose degree is strictly less than n, because every
polynomial can be written uniquely as a(x)f(x) + r(x) where r(x) has
degree less than n.

Now, each of these polynomials in Zp[x] with degree less than n is uniquely
determined by its coefficients. Since there are n coefficients, each taking
one of the p values in Fp, there are p

n possible combinations of coefficients.
Thus, there are pn distinct polynomials of degree less than n in Zp[x], and
therefore, Zp[x]/(f(x)) contains p

n elements.

(c) Prove that there exists an irreducible polynomial of every positive degree
over Zp.

The multiplicative group of nonzero elements of any finite field is cyclic; so
if K is the splitting field of xp

n − x over Zp[x], letting α be a generator of
the multiplicative group of K, we have that K = Zp(α). In particular, the
minimal polynomial of α over Zp, which is irreducible, must have the same
degree as [Zp(α) : Zp] = [K : Zp] = n, so there must exist an irreducible
polynomial over Zp of degree n.
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7.

(a) Let L : K be an extension of finite fields. Use the degree of the extension
to show that if |L| = pn and |K| = pm, then m | n.
Since L is a finite field extension of K, L is a finite-dimensional vector
space over K. Let [L : K] = n, so L has dimension n over K. Thus, L has
pn elements. Similarly, K has dimension m over Fp, so it has pm elements.

Now, L is also an extension of Fp because K is. Thus, by the Theorem
3.3 from Howie,

[L : Fp] = [L : K] · [K : Fp] = n ·m.

But we know that the cardinality of L is pn and the cardinality of Fp is
p, so |L| = pn.

Therefore, n · m = [L : Fp] = logp |L| = logp p
n = n, implying m = 1,

which proves m | n.

(b) Prove that if m | n, then (pm − 1) | (pn − 1).

Given m|n, there exists some k ∈ Z+ such that n = mk.

Since pm ≡ 1 (mod pm − 1), we have

pn = pmk = (pm)k ≡ 1k = 1 (mod pm − 1)

This precisely means that pn − 1 ≡ 0 (mod pm − 1), establishing the
divisibility relationship (pm − 1)|(pn − 1).

(c) Prove that if m | n, then GF(pn) has a subfield with pm elements.

With the zeros of xp
n − x are exactly the elements of a finite field with

pm elements. Since splitting fields are uniquely determined up to isomor-
phism, written as GF(pn).

First, if m divides n, then pm − 1 divides pn − 1, and moreover xp
n−1 − 1

divides xp
n −1. Thus xp

m −x divides xp
n −x. Hence, GF(pm) is a subfield

of GF(pn).

** Conversely, if GF(pm) is a subfield of GF(pn), then GF(pn) is a vector
space over GF(pm). Thus pn = (pm)k for some k ≥ 1. Hence, m is a
divisor of n.

8.

(a) In GF(pn), show that the Frobenius automorphism ϕ : a 7→ ap has order
n.

we can start by fixing every element of Fp by any automorphism because
they are just sums of 1’s. Then, for any nonzero element α in GF(pn),
α(pn−1) = 1 due to Lagrange’s theorem applied to the multiplicative group
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of nonzero elements in GF(pn). Hence, αpn

= α for all nonzero α in
GF(pn).

Suppose there exists some m < n such that αm = α for all nonzero α
in GF(pn). Then, the field GF(pn) would have only pm elements, which
contradicts the fact that it has pn elements.

Since there is no smaller exponent m < n for which αm = α holds for all
nonzero α in GF(pn), the order of the Frobenius automorphism must be
n.

(b) Prove that the group of automorphisms of GF(pn) is cyclic with order n.

Let’s denote this automorphism group K. Firstly, K has Zp as a subfield.
Notice that if f : K → K is an automorphism, then it must be that f is the
identity on Zp. This is because f(1) = 1 and f(0) = 0, and the elements
of Zp are obtained by adding 1’s together: 0, 1, 1 + 1, 1 + 1 + 1, ..., p − 1.
Thus, any automorphism of K is a Zp-automorphism. It follows that the
automorphism group of K is the same as Gal(K/Zp).

Such K is a Galois extension of Zp because all finite fields are isomorphic
to GF(pn) that it is a splitting field of the polynomial h(x) = xp

n − x
over Zp. Thus, we can apply Galois theory. It follows that Gal(K/Zp) has
order n since this is the dimension of K as a vector space over Zp.

Since every element of K is a zero of h(x), it follows that pn = 1. Suppose

that p has an order strictly smaller than this d, say. Then ap
d

= a for
each a in K. But this means that the elements of K are all zeroes of a
polynomial with degree pd. In particular, K can have at most pd elements,
a contradiction. Thus, the Frobenius has the correct n order and the group
is cyclic as required.
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