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Exercise 3.17 Let K be a field of characteristic 0, and suppose that X4 −
16X2 + 4 is irreducible over K. Let α be the element X + ⟨X4 − 16X2 + 4⟩ in
the field L = K[X]/⟨X4 − 16X2 + 4⟩. Determine the minimum polynomials of
α2, α3 − 14α, and α3 − 18α.

a) α2

Since β = α2 does not belong to K, its minimum polynomial has degree
at least 2. Then, since β2 − 16β + 4 = 0 in K, the minimum polynomial
of α2 is X2 − 16X + 4.

b) α3 − 14α

(α3 − 14α)2 = α6 − 28α4 + 196α2 = α2(α4 − 16α2 + 4)− 12(α4 − 16α2 +
4) + 48 = 48, the minimum polynomial of α3 − 14α is X2 − 48.

c) α3 − 18α

(α3 − 18α)2 = α6 − 36α4 + 324α2 = α2(α4 − 16α2 + 4)− 20(α4 − 16α2 +
4) + 80 = 80, the minimum polynomial of α3 − 18α is X2 − 80.

Exercise 6.1 Let f, g be polynomials over a field K, with ∂(f) = m, ∂(g) = n.
(i) Show that D(f + g) = Df +Dg.

Proof. We have f = a1 + 2a2X + · · · +manX
m−1 and g = b1 + 2b2X + · · · +

nbnX
n−1 for some coefficients am, bn ∈ K. Then, the sum f +g is a polynomial

of degree at most max(m,n).
The derivative of f + g is

D(f + g) = D(a0 + a1X + · · ·+ amXm + a0 + b1X + · · ·+ bnX
n)

= a1 + 2a2X + · · ·+mamXm−1 + b1 + 2b2X ++ · · ·+ nbnX
n−1

= D(a0 + a1X + · · ·+ amXm) +D(b1X + · · ·+ bnX
n)

= Df +Dg.

(ii) Show, by induction on m+ n, that D(fg) = (Df)g + f(Dg).
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Proof. Prove by induction:
Base case (n = 0):

Both f and g are constants, and D(fg) = 0 = (Df)g + f(Dg).
Inductive Hypothesis:

Assume the result holds for all pairs (f ′, g′), ∂(f ′) + ∂(g′) < m+ n.
Inductive Step: Suppose m+ n = k;

D(fg) = D(amb0X
m + amb1X

m+1 + · · ·+ ambnX
m+n)

= am(mb0X
m−1 + (m+ 1)b1X

m + (m+ 2)b2X
m+1 + · · ·+ (m+ n)bnX

m+n−1)

= mamXm−1(b0 + b1X + · · ·+ bnX
n) + amXm(b1 + 2b2X + · · ·+ nbnX

n−1)

= (Df)g + f(Dg).

Here, we used the product rule for differentiation and applied the induction
hypothesis to the terms involving derivatives.
∴ By the principle of induction, the claim holds for all polynomials that ∂f +
∂g < k

3. Let n be an integer which is not a perfect square. Prove that for any
a, b ∈ Q, if a+ b

√
n is a root of a polynomial f(x) ∈ Q[x], then a− b

√
n is also

a root of f(x).

Proof. If a + b
√
n /∈ Q, then Q(a + b

√
n) is an extension of Q, and we have

[Q(a+ b
√
n) : Q] ≥ 2. Now consider the polynomial P = X2−2aX+a2− b2n ∈

Q[X]. We have

P (a+ b
√
n) = (a2 + b2n+ 2abn

√
n)− 2a2 − 2abn

√
n+ a2 − b2n = 0

thus a + bn
√
n is a root of P . Now, since we have [Q(a + b

√
n) : Q] ≥ 2 and

deg(P ) = 2, we get that P is the minimal polynomial of a + bn
√
n. Now, we

also have

P (a− b
√
n) = (a2 + b2n− 2abn

√
n)− 2a2 + 2abn

√
n+ a2 − b2n = 0

so a− b
√
n is also a root of P .

4.

(a) Show that f = X3 +X + 1 is irreducible over Z2.

Since the degree of this polynomial is 3, so it has no roots in Z2. f does
not have any roots in Z2 with values of f at X = 0 and X = 1:

f(0) = 03 + 0 + 1 = 1 ̸= 0

f(1) = 13 + 1 + 1 = 1 + 1 + 1 = 1 ̸= 0

so, f cannot be factored into linear factors over Z2. Therefore, f is irre-
ducible over Z2.
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(b) Write down the multiplication table for the splitting field K of f over Z2.
What is the degree of K over Z2?

0 1 α 1 + α α2 1 + α2 α+ α2 1 + α+ α2

0 0 0 0 0 0 0 0 0
1 0 1 α 1 + α α2 1 + α2 α+ α2 1 + α+ α2

α 0 α 1 + α α+ α2 1 + α2 α2 1 + α+ α2 1
1 + α 0 1 + α α+ α2 1 1 + α+ α2 α α2 α2 + 1
α2 0 α2 1 + α2 1 + α+ α2 α 1 1 + α α+ α2

1 + α2 0 1 + α2 α α2 1 + α 1 + α+ α2 1 α+ α2

α+ α2 0 α+ α2 1 α2 α+ α2 1 + α α 1 + α2

1 + α+ α2 0 1 α2 + 1 α+ α2 1 α2 1 + α+ α2 α

The degree of K over Z2 is 3 because f is of degree 3.

(c) Determine the linear factors of f in K[X].

Since f(x) is irreducible over Z2, all zeros of f(x) must lie in an extension
field of Z2. Let α be a zero of f(x). Z2(α) can be described as α4 = α2+α,
α5 = α2 + α + 1, α6 = α2 + 1, and α7 = 1. Higher powers of α repeat
preceding powers. Therefore, Z2(α) = {0, 1, α, α2, α+ 1, α2 + 1, α2 + α+
1, α2 + α} = {a0 + a1α+ a2α

2 | ai ∈ Z2}.
The three zeros of f(x) are α, α2, and α2 + α.

f(x) = (x+ α)(x+ α2)(x+ α2 + α)

(d) Show that K∗ is a cyclic group of order 7.

Let’s check the orders of each non-zero element in K. Since K is small,
we can simply compute the powers of each element until we find one with
order 7.

The elements in K are {1, α, α2, α3, α4, α5, α6}. We’ll check the orders of
each:

(a) α2 = α+ 1

(b) α3 = α2 · α = (α+ 1) · α = α2 + α

(c) α4 = α3 · α = (α2 + α) · α = α3 + α2 = α2 + α+ 1

(d) α5 = α4 · α = (α2 + α+ 1) · α = α3 + α2 + α = α2 + 1

(e) α6 = α5 · α = (α2 + 1) · α = α3 + α = α+ 1

(f) α7 = α6 · α = (α+ 1) · α = α2 + α

So, we see that α has order 7, which means K∗ is generated by α. Hence,
K∗ is cyclic of order 7.
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5. Find the degrees of the splitting fields of the following polynomials over Q.

(a) x3 − x2 − x− 2

By observation, x = 2 is a root of this polynomial. Then, we can factor
it as x3 − x2 − x − 2 = (x − 2)(x2 + 1). The quadratic factor x2 + 1 has
no real roots, so it’s irreducible over the rationals. The roots of x2 + 1
are complex, namely i and −i. Thus, the splitting field of this polynomial
over Q is Q(i), which has degree 2 over Q.

(b) x4 − 5

Since x4−5 = (x2−
√
5)(x2+

√
5), the polynomial’s roots are {± 4

√
5,± 4

√
5i}.

So the splitting field of x4 − 5 over Q is F = Q( 4
√
5, i), which has degree

8 over Q.

(c) x6 + x3 + 1

Because (x6 + x3 + 1)(x3 − 1) = x9 − 1, Q(e2πi/9) is the splitting field.
The polynomial x6+x3+1 is irreducible over Q (plug in x+1 for x) with
root e2πi/9. Since e2πi/9 generates all the roots of x9− 1, it must generate
all the roots of x6 + x3 + 1. So the degree of the extension is 6.

6. Let n be an integer ≥ 3 and let ω = e
2πi
n .

(a) Prove that Q(ω) is the splitting field of xn − 1 over Q.

We need to check 2 conditions:

(a) Every root of xn − 1 is in Q(ω).

Every root of xn − 1 is of the form ωk, where 0 ≤ k ≤ n− 1. This is
because ω is a primitive nth root of unity, meaning ωn = 1 and its
powers generate all n distinct roots of unity. Since Q(ω) contains all
powers of ω, it contains all the roots of xn − 1.

(b) Q(ω) is the smallest field extension of Q containing all the roots of
xn − 1.

We observe that Q(ω) is generated by ω, and therefore contains all
powers of ω. Any other field containing all roots must contain ω,
hence it must contain Q(ω).

Therefore, Q(ω) is indeed the splitting field of xn − 1 over Q.

(b) Find its degree for n = 3, 4, 5, 6, 7, 8.

n = 3: x3 − 1 = (x − 1)(x2 + x + 1). The roots are 1 and −1±i
√
3

2 . The
splitting field has degree 2.

n = 4: x4 − 1 = (x − 1)(x + 1)(x2 + 1). The roots are 1, −1, i, and −i.
The splitting field has degree 2.

n = 5: x5−1 = (x−1)(x4+x3+x2+x+1). Since the second polynomial
is irreducible over Q by the eisenstein criterion. By setting y = x +
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1
x , we obtain a quadratic for y and solve it to see that the roots are 1,

−1+
√
5±i

√
10+2

√
5

4 and −1−
√
5±i

√
10−2

√
5

4 . The splitting field has degree 4.

n = 6: x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1). The roots are 1,

−1, and ±1±i
√
3

2 for all four possible choices of the ± signs. The splitting
field has degree 2.

n = 7: x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1). Again, it turns
out that the second factor is irreducible by the eisenstein criterion, so the
splitting field has degree 6.

n = 8: x8 − 1 = (x− 1)(x+ 1)(x2 + 1)(x4 + 1). The roots are 1, −1, ±i,
and ±(1± i

√
2), for all four choices of sign. The splitting field is Q(i,

√
2)

and has degree 4.

So, summarizing:

1. For n = 3, 4, 6, the degree of Q(ω) over Q is 2.

2. For n = 5, 8, the degree is 4.

3. For n = 7, the degree is 6.

7.

(a) Find the minimum polynomial of cos
(
2π
5

)
. (You might find the identities

cos(2θ) = 2 cos2 θ − 1 and cos(3θ) = 4 cos3 θ − 3 cos θ helpful.)

Let x = cos
(
2π
5

)
. We know that cos

(
2π
5

)
is a root of the equation x5−1 =

0 because cos
(
2π
5

)
represents the cosine of a regular pentagon’s interior

angle. Thus, the minimal polynomial of cos
(
2π
5

)
divides x5 − 1.

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

So we have that x4 + x3 + x2 + x+ 1 = 0.

0 = 1 + x+ x2 + x3 + x4 = 1 + (x+ x4) + (x2 + x3)

= 1 + 2x+ 2(2x2 − 1) = 4x2 + 2x− 1.

So the minimal polynomial for cos
(
2π
5

)
is 4x2 + 2x− 1.

(b) Prove that a regular pentagon is constructible.

From the fact that the polynomial x4 + x3 + x2 + x + 1 is irreducible in
Q, [Q(α) : Q] = 4. Now we see that α lies in the extension field of degree
4 = 22, and hence, α is constructible.

Also, by the quadratic equation and the fact that α = cos( 2π5 ) > 0, we get

α =
−1 +

√
5

4
.

Hence, α is constructible over Q.

5


