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Exercise 3.7 Show that f(X) = X3+ X + 1 is irreducible over Q. Let o be
a root of f in C. Express é and (#2 as linear combinations of {1, a, a?}.

To show the irreducibility of f(x), we can show that f(X — 1) is irreducible
over Q applying Eisenstein’s criterion. The polynomial f(X —1) = X3 —3X?2 +
6X — 3 satisfies the conditions of Eisenstein’s criterion with p = 3. So f(X) =
X3 4+ X +1 is irreducible over Q.

Now, using the fact that « be a root of f in C which means f(«) = 0, then
we plug f(a) back into f(x), we get 1 = —a® — «, dividing both side by «

1 —ad—

= 2o

a o
For o%ﬂ’ we can try to factor f(a) into the form:(a+2)(a®+xa+y). And so, we
get v = =2,y = 5. Thus, (a+2)(a®—2a+5) = a®*+a+10 = (a®+a+1)+9 = 9.
Therefore,

1 1 2
m = 9(0{ 20[ + 5)
Exercise 3.9 Show that Q(v/2,v5) = Q[v2 + V/5].
It is clear that Q(\/ﬁ—&— \/5) C Q(V2, \/5)

Now consider that

(V2 +V5)% = 229v2 + 145V/5

because v2 + /5 € Q(vV2 + V/5), and also 229v/2 + 145v/5 € Q[vV2 + V5.
Hence Q(v/2, \/5) C QW2+ \/5) Since we showed both inclusions, we have

Determine the minimum polynomial of:
(i) V2 + /5 over Q.
Since (v2+v/5)* = (7+2v10)? = 89 4 28V/10, we see that (v/2++/5)* —
14(v/24+/5)?49 = 0, and the minimum polynomial over Q is X*—14X +9.
(ii) V2 + /5 over Q[v2].

Since (V2 +v/5)? = 7+ 210 = 2v/2(v/2 + v/5) + 3, the minimum poly-
nomial over Q[v/2] is X2 — 22X — 3.



(iii)

V2 4+ /5 over Q[\/g]

Since (vV2++5)? = 74+2v/10 = 2v/5(v/2++/5) — 3, the minimum polynomial
over Q[\/g] is X2 - 2V5X + 3.

Exercise 3.15 Let o, 8 be transcendental numbers. Decide whether the fol-
lowing conclusions are true or false:

(i)

Q) = Q(P);

True. Think of any algebraic dependencies that o has over a ground field
Q as obstructions to Q(«) = Q(X), where X is an indeterminate, and both
Q(«) and Q(p) are isomorphic to the field Q(X) of rational functions over

Q.

af is transcendental;

False. Let a be any transcendental number. Then g := é is transcenden-
tal, and a - 8 = 1. Thus, af is not necessarily transcendental.

o is transcendental;

False. e and In(2) are transcendental (listed in class), but e(?) = 2 is not.

o? is transcendental.

True. If o2 were algebraic, there would exist ag, a1, ..., a, such that ag +
a10? 4 ...+ a,a®® =0, and this would imply that « is algebraic.

4. Let K =Q(+/3,V5).

(a)

Prove that v/3 ¢ Q(\/g)

Proof. Suppose, for a contradiction, that there exist a,b € Q such that
V3 =a+ b\/g, where b must be non-zero, since /3 is irrational. Then

a® = (V3—-bV5)2 = (3+5b%) — 2by/15, and so v/15 = =243 ¢ Q. This
is a contradiction. O

Find a basis of K over Q.

We can write Q(v/3,v/5) as Q(v/3)[v/5]. The set {1,/3} is clearly a basis
for Q[v/3] over Q. Since v/3 ¢ Q[v/5], we must have dimg(Q(v/3,V5) :
Q[V3]) > 2. On the other hand, from the trivial observation that (v/5)% —
5 = 0, we conclude that X2 — 5 is the minimum polynomial of /5 over
Q[v/3], and that {1,/5} is a basis. Then, from Theorem 3.3, we deduce
that {1,/3,v/5,V15} is a basis for Q(v/3,/5) over Q.

Show that the only subfields of K are Q, Q(v/3), Q(v/5), Q(+/15), and K
itself.

First of all, K = Q(v/3,V/5), so it is assert that it is a subfield of K. We
found already that these are basis, and their union will also be a subfield



in K. Q and K are trivial subfield. The formal way might involve the
Fundamental Theorem.

Having a question, isn’t {1, V3 + V5, (\/ﬁ + \/5)2, (\/§ + \/5)3}basis and
subfields of K?

(d) Find the minimum polynomial of V3 + /5 over Q.
The minimum polynomials of degree 4. From the information that (v/3 +

V5)2 = 8 4+ 2V/15 and (V3 + v/5)* = 124 4 32V/15 = 16(8 + 21/15) — 4,

we can manipulate two terms, and find that the minimum polynomial is
X*— 16X+ 4.

5. Show that [Q(v/5 + V/2) : Q] = 6.
Let o = /5 + /2. Then (a — \/5)3 = 2. Following by direct computation:
z® — 3vVb2® + 152 — 55 = 2
2% 4+ 152 — 2 = V/5(32% +5)
(@ +6a —2)? =5(3a% +2)?
2% + 302" — 42® + 22527 — 602 + 4 = 452" + 1502 + 125
= 2% — 152" — 42% + 752 — 60z — 121 = 0
Therefore, « is a root of a polynomial of degree 6, and so [Q(v/5+ /2) : Q] < 6.

On the other hand, [Q(v/5+ ¥/2) : Q] is a multiple of 6 because [Q(V/5) : Q] = 2
and [Q(¥/2) : Q] = 3. Therefore, [Q(v/5 + V/2) : Q] = 6.

6. Let L be a field, K be a subfield of L, and a,b € L be algebraic over K of
degrees m and n respectively. Prove that if m and n are relatively prime, then
[K(a,b) : K] = mn.

Proof. First, K(a) is the smallest field containing K and a by definition, and
also that K[a] = K(a).(shown in class) Therefore, K(a,b) = K[a](b) = K|a][b]
is the smallest field containing K and also both a and b. Thus, K[b][a] =
K(b,a) = K(a,b) = Kla][b]. Now, we have the following relation:
K C Kla] C Kla][b] = K(a,b)
, and so we can write
[K(a,b) : K] = [Kla] : K] - [K[a][b] - KTal],

but therefore m = [K|a] : K| divides [K(a,b) : K|. By symmetry, n also divides
[K(a,b) : K], and so [K(a,b) : K] > mn since m and n are relatively prime.

On the other hand, let g(b) = 0 for some g(x) € K[z] of degree n. Note
K[z] C Kla]z], and so g(x) € Kla][z] as well. Thus, g(b) = 0. Let h(z) €
Kla][z] be the minimal polynomial for b, so that & | g. It follows that degh < n,
and so [Ka][b] : K[a]] = degh < n. Thus,

mn < [K(a,b) : K] = [K][a] : K] [K[a][b] : K[a]] = m - [K][a][b] : K[a]] < mn,

As a result, [K(a,b) : K] = mn. O



7. Let K be a field. Prove that the following conditions are equivalent.

(a)

Every polynomial in K[z] of degree > 1 has a root in K.
(a) = (b)

Assume (a) holds. Let f(x) be any polynomial of degree > 1 in K|[z].
By (a), there exists a root ¢ in K such that f(c) = 0. Therefore, we can
write f(x) = (z —c¢)g(x), where g(x) is another polynomial in K[z]|. Since
deg(g) = deg(f) — 1, we can repeat this process for g(x) until all factors
are linear. This implies that every polynomial of degree > 1 in K[z] can
be factored into linear polynomials.

Every polynomial in K[z] of degree > 1 splits over K, that is, it factors
as a product of linear polynomials.

(b) = ()

Assume (b) holds. Let f(x) be an irreducible polynomial in K[z]. Since
f(x) is irreducible, it cannot be factored into non-trivial polynomials. By
(b), every polynomial splits over K, including irreducible ones. Therefore,

f(x) can only be a product of linear polynomials. Since f(z) is irreducible,
there must be only one linear factor, and thus, f(z) has degree 1.

Every irreducible polynomial in K[x] has degree 1.

(c) = (d)

Assume (c¢) holds. Let L be an algebraic extension of K, and let a € L.
Since a is algebraic over K, there exists a polynomial f(z) € K[x] such
that f(a) =0. By (c), f(z) must be irreducible and of degree 1, implying
that a is in fact in K. Since a was chosen arbitrarily from L, L must be
contained in K, and therefore L = K.

There is no algebraic extension of K except K itself.
(d) = (a)

Assume (d) holds. Let f(z) be any polynomial of degree > 1 in K[xz]. If
f(x) has no roots in K, then by (d), there must be an algebraic extension
L of K containing a root of f(x). But this contradicts (d), as L cannot
be a proper extension of K. Therefore, every polynomial of degree > 1 in
K|[z] has a root in K.

These four implications establish the equivalence of the given conditions.

A field K is called algebraically closed if any of the conditions above are
satisfied.



8. Prove that an algebraically closed field must contain infinitely many ele-
ments.

Proof. Let F be a finite field and consider the polynomial

f@)=1+ ] @—a).

The coefficients of f(z) lie in the field F, and thus f(z) € Flz]. f(x) is a
non-constant polynomial.

But for each a € F, we have f(a) =1 # 0. So the polynomial f(x) has no
root in F'. Hence, the finite field F' is not algebraically closed. It follows that
every algebraically closed field must be infinite. O



