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Exercise 3.7 Show that f(X) = X3 +X + 1 is irreducible over Q. Let α be
a root of f in C. Express 1

α and 1
α+2 as linear combinations of {1, α, α2}.

To show the irreducibility of f(x), we can show that f(X − 1) is irreducible
over Q applying Eisenstein’s criterion. The polynomial f(X−1) = X3−3X2+
6X − 3 satisfies the conditions of Eisenstein’s criterion with p = 3. So f(X) =
X3 +X + 1 is irreducible over Q.

Now, using the fact that α be a root of f in C which means f(α) = 0, then
we plug f(α) back into f(x), we get 1 = −α3 − α, dividing both side by α

1

α
=

−α3 − α

α
= −α2 − 1.

For 1
α+2 , we can try to factor f(α) into the form:(α+2)(α2+xα+y). And so, we

get x = −2, y = 5. Thus, (α+2)(α2−2α+5) = α3+α+10 = (α3+α+1)+9 = 9.
Therefore,

1

α+ 2
=

1

9
(α2 − 2α+ 5)

Exercise 3.9 Show that Q(
√
2,
√
5) = Q[

√
2 +

√
5].

It is clear that Q(
√
2 +

√
5) ⊆ Q(

√
2,
√
5).

Now consider that

(
√
2 +

√
5)5 = 229

√
2 + 145

√
5

because
√
2 +

√
5 ∈ Q(

√
2 +

√
5), and also 229

√
2 + 145

√
5 ∈ Q[

√
2 +

√
5].

Hence Q(
√
2,
√
5) ⊆ Q(

√
2 +

√
5). Since we showed both inclusions, we have

Q(
√
2,
√
5) = Q[

√
2 +

√
5].

Determine the minimum polynomial of:

(i)
√
2 +

√
5 over Q.

Since (
√
2+

√
5)4 = (7+2

√
10)2 = 89+28

√
10, we see that (

√
2+

√
5)4−

14(
√
2+

√
5)2+9 = 0, and the minimum polynomial over Q isX4−14X+9.

(ii)
√
2 +

√
5 over Q[

√
2].

Since (
√
2 +

√
5)2 = 7 + 2

√
10 = 2

√
2(
√
2 +

√
5) + 3, the minimum poly-

nomial over Q[
√
2] is X2 − 2

√
2X − 3.
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(iii)
√
2 +

√
5 over Q[

√
5].

Since (
√
2+

√
5)2 = 7+2

√
10 = 2

√
5(
√
2+

√
5)−3, the minimum polynomial

over Q[
√
5] is X2 − 2

√
5X + 3.

Exercise 3.15 Let α, β be transcendental numbers. Decide whether the fol-
lowing conclusions are true or false:

(i) Q(α) ≃ Q(β);

True. Think of any algebraic dependencies that α has over a ground field
Q as obstructions to Q(α) ∼= Q(X), whereX is an indeterminate, and both
Q(α) and Q(β) are isomorphic to the field Q(X) of rational functions over
Q.

(ii) αβ is transcendental;

False. Let α be any transcendental number. Then β := 1
α is transcenden-

tal, and α · β = 1. Thus, αβ is not necessarily transcendental.

(iii) αβ is transcendental;

False. e and ln(2) are transcendental (listed in class), but eln(2) = 2 is not.

(iv) α2 is transcendental.

True. If α2 were algebraic, there would exist a0, a1, . . . , an such that a0 +
a1α

2 + . . .+ anα
2n = 0, and this would imply that α is algebraic.

4. Let K = Q(
√
3,
√
5).

(a) Prove that
√
3 /∈ Q(

√
5).

Proof. Suppose, for a contradiction, that there exist a, b ∈ Q such that√
3 = a + b

√
5, where b must be non-zero, since

√
3 is irrational. Then

a2 = (
√
3− b

√
5)2 = (3+5b2)− 2b

√
15, and so

√
15 = 5b2−a2+3

2b ∈ Q. This
is a contradiction.

(b) Find a basis of K over Q.

We can write Q(
√
3,
√
5) as Q(

√
3)[

√
5]. The set {1,

√
3} is clearly a basis

for Q[
√
3] over Q. Since

√
3 /∈ Q[

√
5], we must have dimQ(Q(

√
3,
√
5) :

Q[
√
3]) ≥ 2. On the other hand, from the trivial observation that (

√
5)2−

5 = 0, we conclude that X2 − 5 is the minimum polynomial of
√
5 over

Q[
√
3], and that {1,

√
5} is a basis. Then, from Theorem 3.3, we deduce

that {1,
√
3,
√
5,
√
15} is a basis for Q(

√
3,
√
5) over Q.

(c) Show that the only subfields of K are Q, Q(
√
3), Q(

√
5), Q(

√
15), and K

itself.

First of all, K = Q(
√
3,
√
5), so it is assert that it is a subfield of K. We

found already that these are basis, and their union will also be a subfield
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in K. Q and K are trivial subfield. The formal way might involve the
Fundamental Theorem.

Having a question, isn’t {1,
√
3 +

√
5, (

√
3 +

√
5)2, (

√
3 +

√
5)3}basis and

subfields of K?

(d) Find the minimum polynomial of
√
3 +

√
5 over Q.

The minimum polynomials of degree 4. From the information that (
√
3+√

5)2 = 8 + 2
√
15 and (

√
3 +

√
5)4 = 124 + 32

√
15 = 16(8 + 2

√
15) − 4,

we can manipulate two terms, and find that the minimum polynomial is
X4 − 16X2 + 4.

5. Show that [Q(
√
5 + 3

√
2) : Q] = 6.

Let α =
√
5 + 3

√
2. Then (α−

√
5)3 = 2. Following by direct computation:

x3 − 3
√
5x2 + 15x− 5

√
5 = 2

x3 + 15x− 2 =
√
5(3x2 + 5)

(α3 + 6α− 2)2 = 5(3α2 + 2)2

x6 + 30x4 − 4x3 + 225x2 − 60x+ 4 = 45x4 + 150x2 + 125

= x6 − 15x4 − 4x3 + 75x2 − 60x− 121 = 0

Therefore, α is a root of a polynomial of degree 6, and so [Q(
√
5+ 3

√
2) : Q] ≤ 6.

On the other hand, [Q(
√
5+ 3

√
2) : Q] is a multiple of 6 because [Q(

√
5) : Q] = 2

and [Q( 3
√
2) : Q] = 3. Therefore, [Q(

√
5 + 3

√
2) : Q] = 6.

6. Let L be a field, K be a subfield of L, and a, b ∈ L be algebraic over K of
degrees m and n respectively. Prove that if m and n are relatively prime, then
[K(a, b) : K] = mn.

Proof. First, K(a) is the smallest field containing K and a by definition, and
also that K[a] = K(a).(shown in class) Therefore, K(a, b) = K[a](b) = K[a][b]
is the smallest field containing K and also both a and b. Thus, K[b][a] =
K(b, a) = K(a, b) = K[a][b]. Now, we have the following relation:

K ⊆ K[a] ⊆ K[a][b] = K(a, b)

, and so we can write

[K(a, b) : K] = [K[a] : K] · [K[a][b] : K[a]],

but therefore m = [K[a] : K] divides [K(a, b) : K]. By symmetry, n also divides
[K(a, b) : K], and so [K(a, b) : K] ≥ mn since m and n are relatively prime.

On the other hand, let g(b) = 0 for some g(x) ∈ K[x] of degree n. Note
K[x] ⊆ K[a][x], and so g(x) ∈ K[a][x] as well. Thus, g(b) = 0. Let h(x) ∈
K[a][x] be the minimal polynomial for b, so that h | g. It follows that deg h ≤ n,
and so [K[a][b] : K[a]] = deg h ≤ n. Thus,

mn ≤ [K(a, b) : K] = [K[a] : K] · [K[a][b] : K[a]] = m · [K[a][b] : K[a]] ≤ mn,

As a result, [K(a, b) : K] = mn.
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7. Let K be a field. Prove that the following conditions are equivalent.

(a) Every polynomial in K[x] of degree ≥ 1 has a root in K.

(a) ⇒ (b)

Assume (a) holds. Let f(x) be any polynomial of degree ≥ 1 in K[x].
By (a), there exists a root c in K such that f(c) = 0. Therefore, we can
write f(x) = (x− c)g(x), where g(x) is another polynomial in K[x]. Since
deg(g) = deg(f) − 1, we can repeat this process for g(x) until all factors
are linear. This implies that every polynomial of degree ≥ 1 in K[x] can
be factored into linear polynomials.

(b) Every polynomial in K[x] of degree ≥ 1 splits over K, that is, it factors
as a product of linear polynomials.

(b) ⇒ (c)

Assume (b) holds. Let f(x) be an irreducible polynomial in K[x]. Since
f(x) is irreducible, it cannot be factored into non-trivial polynomials. By
(b), every polynomial splits over K, including irreducible ones. Therefore,
f(x) can only be a product of linear polynomials. Since f(x) is irreducible,
there must be only one linear factor, and thus, f(x) has degree 1.

(c) Every irreducible polynomial in K[x] has degree 1.

(c) ⇒ (d)

Assume (c) holds. Let L be an algebraic extension of K, and let a ∈ L.
Since a is algebraic over K, there exists a polynomial f(x) ∈ K[x] such
that f(a) = 0. By (c), f(x) must be irreducible and of degree 1, implying
that a is in fact in K. Since a was chosen arbitrarily from L, L must be
contained in K, and therefore L = K.

(d) There is no algebraic extension of K except K itself.

(d) ⇒ (a)

Assume (d) holds. Let f(x) be any polynomial of degree ≥ 1 in K[x]. If
f(x) has no roots in K, then by (d), there must be an algebraic extension
L of K containing a root of f(x). But this contradicts (d), as L cannot
be a proper extension of K. Therefore, every polynomial of degree ≥ 1 in
K[x] has a root in K.

These four implications establish the equivalence of the given conditions.

A field K is called algebraically closed if any of the conditions above are
satisfied.
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8. Prove that an algebraically closed field must contain infinitely many ele-
ments.

Proof. Let F be a finite field and consider the polynomial

f(x) = 1 +
∏
a∈F

(x− a).

The coefficients of f(x) lie in the field F , and thus f(x) ∈ F [x]. f(x) is a
non-constant polynomial.

But for each a ∈ F , we have f(a) = 1 ̸= 0. So the polynomial f(x) has no
root in F . Hence, the finite field F is not algebraically closed. It follows that
every algebraically closed field must be infinite.
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