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1. Show that Z[X] is not a PID.

Proof. by contradiction.
Consider an example of ideal define as following:

⟨2, X⟩ = {2f(X) +Xg(X) : f(X), g(X) ∈ Z[X]},

consisting of all polynomials whose constant term is even. We will show that
⟨2, X⟩ is not principal. We first notice that ⟨2, X⟩ ̸= Z[X] because there are
only even constant terms. For example, 1 /∈ ⟨2, X⟩.

Now, suppose ⟨2, X⟩ = ⟨a(x)⟩ for some a(x) ∈ Z[X]. Then we have x =
a(x)f(x) and 2 = a(x)g(x) for some f(x), g(x) ∈ Z[X] because 2 = 2 ·1+x ·0 ∈
⟨2, X⟩. However, the second equation implies that a(x) must be a constant
polynomial, that is a(x) = {±2,±1}.

Case 1: a(x) = ±1

⟨2, X⟩ = ⟨a(x)⟩ = (±1) = Z[X]

contradicting with the fact that ⟨2, X⟩ ≠ Z[X]
Case 2: a(x) = ±2

⟨2, X⟩ = ⟨a(x)⟩ = (±2) = (2)

But then x = ±2f(x), contradicting with the fact that ±2f(x) has even coef-
ficients. In either case, we get a contradiction. Thus, ⟨2, X⟩ is not principal,
and Z[X] is not a PID.

2. Let K be a field. Show that K[X,Y] is not a PID.
wts: there is an ideal in K[X,Y ] that is not generated by a single element.
Consider the ideal I = ⟨X,Y ⟩ in K[X,Y ], generated by X and Y . We want

to show that I is not principal. Assume that I is a principal ideal, i.e., I = ⟨f⟩
for some f ∈ K[X,Y ].

Now, observe that X and Y are both in I, f |x and f | y, so d must be a
unit, and x and y are coprime. Therefore, I = K[x, y]. In particular, we have
1 ∈ I.

Every element within I takes the form px+ qy, where p, q ∈ K[X,Y ]. This
implies 1 = px + qy for certain p, q ∈ K[X,Y ]. However, any element in the
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form px+ qy does not have a nontrivial constant term, creating a contradiction.
Consequently, I cannot be a principal ideal, establishing that K[X,Y ] is not a
Principal Ideal Domain (PID).

3. Let F be any field with exactly four elements.

(a) Show that F has characteristic 2.

Suppose the characteristic of the field is 4. Then, in a field of characteristic
4, and it has properity that 1 + 1 ̸= 0. However, when computing (1 +
1)(1 + 1) in this field:

(1 + 1)(1 + 1) = 1 + 1 + 1 + 1 = 0

This implies that 1+1 is a zero divisor, which is a contradiction. Therefore,
the assumption that the characteristic is 4 leads to a contradiction. Hence,
the characteristic must be 2.

(b) Show that both elements not in the prime subfield Z2 of F satisfy the
polynomial equation x2 = x+ 1.

We define the field to be F = 0, 1, a, b is a field. For multiplication, we
consider 3 elements 1, a, b a cannot be 1 because then a2 will also be 1. we
can let a2 = b, and then a3 = 1 which works as a field. For addition, a+
b = 0 =⇒ a = −b = b, since charF = 2. It also can’t be a +
b = a, a + b = b else b = 0 or a = 0. Thus, it must be
a+ b = 1 =⇒ b = 1− a = 1 + a.

Now we have that for element a: a2 = a+1, and for element b: b2 = b+1
and b = a2 which then satisfy the polynomial equation b2 = a+ 1.

(c) Show that F is isomorphic to Z2[x]/⟨x2 + x+ 1⟩.
Consider a field F with four elements with characteristic to be 2. For
any nonzero element a in F , the cubic polynomial a3 − 1 can be factored
as (a − 1)(a2 + a + 1) = 0. This factorization holds true for all nonzero
elements in F .

In the case where a belongs to F excluding the characteristic 2 elements
(a ∈ F \ Z2), the expression a2 + a + 1 equals zero, following from the
factorization mentioned earlier. Furthermore, the polynomial x2 + x + 1
is asserted to be irreducible over the field Z2. This means that it cannot
be factored into linear polynomials over Z2. As a consequence of this
irreducibility, it is asserted that for elements a in F \ Z2, the expression
a2 + a + 1 evaluates to zero. Z2[x]/⟨x2 + x + 1⟩. has the four elements
{0,1,X,X+1}, which is the same field we found in part b with {0,1,a,b}.
So F is isomorphic to Z2[x]/⟨x2 + x+ 1⟩.
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4. Let R be a commutative ring with unity, and f be a polynomial of degree
n ≥ 1 in R[X].

(a) Prove that if R is an integral domain, then f has at most n roots in R.

From Howie’s textbook, in Theorem 2.10, Let D be an integral domain,
and let D[X] be the polynomial ring of D. Then for all p, q ∈ D[X],
∂(pq) = ∂p+ ∂q. We can apply The Remainder Theorem and the Factor
Theorem, if a1, . . . , an are roots of f , then f = (x − a1) . . . (x − an)g for
some g ∈ R[x], such that ∂(f) = n+ ∂(g) and ∂(g) ≥ 0, hence ∂(f) ≥ n.
As a result, f has at most n roots in R.

(b) Give a concrete example to show that the statement above is false without
the assumption that R is an integral domain.

Z/8Z[x] is not an integral domain because R has zero divisors.

In Z/8Z[x], consider the polynomials g(x) = 2x and h(x) = 4x. Both g(x)
and h(x) are nonzero polynomials, but their product is the zero polyno-
mial:

g(x) · h(x) = (2x) · (4x) = 8x2 ≡ 0 (mod 8)

This violates the integral domain property since we have two nonzero
elements whose product is zero. Therefore, the proof in part (a) breaks
down in this situation because the assumption of R being an integral
domain is not satisfied for Z/8Z[x].

5. Which of the following polynomials are irreducible over Q?
(a) x3 + 2x2 + 4x+ 2
To check irreducibility, we can use the Eisenstein’s Criterion. In this case,

Eisenstein’s Criterion with the prime p = 2 is applicable. Since all coefficients
except the leading coefficient are divisible by 2, and the constant term is not
divisible by 22, the polynomial is irreducible over Q.

(b) x3 + 2x2 + 2x+ 4
It factors as (x+ 2)(x2 + 2), so it is reducible over Q.
(c) x7 − 47
This polynomial is irreducible over Q because it is a monic polynomial of

prime degree.
(d) x4 + 15
Use Eisenstein’s criterion with p = 3. The conditions are satisfied since f(x)

is irreducible over Q, with 3 | 15, 32 ∤ 15, and the rest of the coefficients are 0,
so it is irreducible over Q.

6. Let p be any prime number.

a. Prove that (x− 0) · (x− 1) · . . . · (x− (p− 1)) = xp − x in Zp[x].

Let’s define the group Z∗
p of non-zero elements of Zp is of order p − 1,

and so ap−1 = 1 for all a in Z∗
p. Then every element of Zp is a root of
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the polynomial Xp − X. Thus, by the Remainder Theorem, Xp − X is
divisible by X(X − 1)(X − 2) . . . (X − (p− 1)). Because both left side and
right side are monic and of degree p, so they are identical.

Above method uses Remainder and Factor Theorem, there is another
method using Fermat’s little theorem to show that xp − x is divisible
by (x− a) for all a ∈ Zp, which will lead to the same result.

b. Show that if two polynomials f(x) and g(x) in Zp[x] determine the same
function on Zp, then f(x)− g(x) is divisible by xp − x.

Proof. Let h(x) = f(x) − g(x). Since f(x) and g(x) determine the same
function on Zp, we have h(x) = 0 for all x ∈ Zp.

By part (a), we know that xp − x is the zero polynomial in Zp[x] when
evaluated at any x ∈ Zp. Therefore, h(x) ≡ 0 (mod p).

This implies that h(x) is divisible by xp − x in Zp[x].

7. Find all monic irreducible quadratic (degree 2) polynomials over the field
Z5.

Consider the polynomial x25 − x. xpn − x is the product of irreducible
polynomials in Fp[x] of degree d for all divisors of n, we focus on the irreducible
polynomials over F5 of degrees 1 and 2.

The degree 1 irreducible polynomials are x, x+1, . . . , x+4. Factoring x25−x
into irreducible polynomials, we isolate the degree 2 terms:

x25−x = x(x24−1) = x(x12+1)(x12−1) = x(x12−4)(x12−1) = x(x6+2)(x6−2)(x6+1)(x6−1)

Further simplifying, we find 10 number of degree 2 irreducible polynomials
over F5, which are:

x2 − 2, x2 + 2, x2 + 2x− 1, x2 − 2x− 1,

x2 + x+ 1, x2 − x+ 1, x2 + 2x− 2, x2 − 2x− 2,

x2 + x− 2, x2 − x− 2.

8. Find all monic irreducible cubic (degree 3) polynomials over the field Z3.
Similar process as previous here, start with x27−x, and we simplifying eventually
get

x3 + 2x2 + 1, x3 + 2x2 + x+ 1, x3 + 2x+ 1, x3 + x2 + 2x+ 1,

x3 + x2 + 2, x3 + 2x3 + x2 + x+ 2, x3 + 2x+ 2, x3 + 2x2 + 2x+ 2.
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