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Exercise 1.4 Prove the equivalence of (R9) and (R9)’?

Proof.

⇒ Assume (R9’) holds true, want to show that (R9) also holds.
Consider any elements a, b, c in the ring R with c ̸= 0. Assume ca = cb.

Subtract cb from both sides:
ca− cb = 0

Factor out c on the left side:
c(a− b) = 0

Now, since c ̸= 0, given that a = b from (R9), which implies (a − b) = 0 Then
c(a− b) = 0 implies that (a− b) = 0 Therefore, (R9) implies (R9’), that is, if R
is a ring with no divisors of zero, then cancellation laws hold in R.

⇐ Assume (R9) holds true. We want to show that (R9’) also holds. Consider
any elements a, b in the ring R such that ab = 0, and a ̸= 0:

Since ab = 0 and a ̸= 0, multiply right side by a:

ab = a0

which implies b = 0, which satisfy cancellation. Similarly, if b ̸= 0, multiply
right side by a:

ab = 0b

which implies a = 0, which satisfy cancellation. This shows that R has no zero
divisors Therefore, (R9’) implies (R9). As a result, there is equivalence of (R9)
and (R9)’.

Exercise 1.5 Show that every finite integral domain is a field.
wts: the existence of (nonzero) inverses within finite integral domain

Proof. Suppose R be a finite integral domain with unity, and let r be a nonzero
element of R where r ̸= 0, 1

Consider the products rr1, rr2, . . . , rrn . Suppose rri = rrj with some
i,j,i < j then ri = rj by cancellation. Then ri − rj = 0 and since i < j, so rj−i

is in R.We have ri(1− rj−i) = ri− rj = 0. As r is non zero and R is an integral
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domain so ri is non zero. But then 1− rj−i = 0 then rj−i = 1. It follows that
as rj−i−1r = 1. Hence r is a unit with inverse rj−i−1

Then, 1 ∈ R equals r · rj−i−1 for some i,j, implying that r is invertible. By
definition, the integral domain, which is a commutative ring, that satisfies the
existence of inverses is a field.

Exercise 1.7 Let i =
√
−1. Show that, by contrast with Example 1.2, the

ring R = a+ bi
√
2 : a, b ∈ Z has group of units 1,-1.

Existence of units:
For a + bi

√
2, consider (1 + 0i

√
2), which is equivalent to 1. This is the

multiplicative identity in R, and thus, 1 is a unit.
consider (0− 1i

√
2), which is equivalent to −1. This is also a unit.

No other units exist:
Suppose a + bi

√
2 is a unit in R other than 1 and −1. This implies there

exists c+ di
√
2 such that (a+ bi

√
2)(c+ di

√
2) = 1. Expanding and comparing

real and imaginary parts, we get two equations:

ac− 2bd = 1

ad+ bc = 0

From the second equation, we can solve for d = − bc
a . Substituting this into the

first equation, we get ac+2b2c = 1. Rearranging, ac = 1−2b2c. This implies ac
is odd, but 1− 2b2c is even, leading to a contradiction. Therefore, there are no
units in R other than 1 and −1. In conclusion, the group of units of is {1,−1}.

Exercise 1.13 Show that a commutative ring with unity having no proper
ideals is a field

To show a ring R is a field, we need to show it has multiplicative inverse
similar to last exercise.

Let R be a non-zero commutative ring with unity, and let a be any non-zero
element of R, then Ra is the set of ideal R

Ra = {r1a, r2a . . . }

Let r1a, r2a ∈ R then r1a − r2a = (r1 − r2)a ∈ Ra if r ∈ R, then r(r1a) =
(rr1)a ∈ R As a result, Ra is an ideal. Given that R has no proper ideal, then
Ra = R and 1 ∈ R = Ra. There exist an element b in R such that ba = 1. That
is to say, R contains inverse of each other, so R is a field.

Exercise 1.15 (i) Show that the set K = {
(

a b
−3b a

)
: a, b ∈ Q} is a field

with respect to matrix addition and multiplication.
To show that the set K is a field with respect to matrix addition and mul-

tiplication, we need to demonstrate that K satisfies the field axioms.
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Matrix Addition:

1. Closure under Addition:

A+B =

(
a1 + a2 b1 + b2

−3(b1 + b2) a1 + a2

)
∈ K

2. Associativity of Addition: Matrix addition is inherently associative.

3. Existence of Additive Identity: O =

(
0 0
0 0

)
is the additive identity

in K.

4. Existence of Additive Inverse: For any A ∈ K, −A =

(
−a −b
3b −a

)
∈

K.

Matrix Multiplication:

1. Closure under Multiplication:

AB =

(
a1a2 − 3b1b2 a1b2 + b1a2

−3(a1b2 + b1a2) −3b1b2 + a1a2

)
∈ K

2. Associativity of Multiplication: Matrix multiplication is inherently
associative.

3. Existence of Multiplicative Identity: I =

(
1 0
0 1

)
is the multiplica-

tive identity in K.

4. Existence of Multiplicative Inverse: For any A ∈ K (except for the

zero matrix), A−1 = 1
a2
1+3b21

(
a1 −b1
3b1 a1

)
∈ K.

By showing these axioms above, the set K is a field.
(ii) Show that K is isomorphic to the field Q(i

√
3) defined in the previous

exercise.
To show that K is isomorphic to the field Q(i

√
3), we need to find a bijective

homomorphism between the two fields. Let’s denote the elements of K as a+bϵ,
where a, b ∈ Q and ϵ is an indeterminate satisfying ϵ2 = −3.

The field K consists of matrices of the form:

A =

(
a b

−3b a

)
Now, let’s consider the field Q(i

√
3), where elements are of the form a+bi

√
3.

We can define a mapping ϕ : K → Q(i
√
3) as follows:

ϕ : A 7→ a+ bi
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Here, i in Q(i
√
3) corresponds to the matrix

(
0 1
−3 0

)
in K.

The homomorphism ϕ preserves addition and multiplication:

1. ϕ(A1 +A2) = ϕ(A1) + ϕ(A2)

2. ϕ(A1 ·A2) = ϕ(A1) · ϕ(A2)

Now, let’s explicitly define ϕ:

ϕ :

(
a b

−3b a

)
7→ a+ bi

The inverse mapping ϕ−1 can be defined as:

ϕ−1 : a+ bi 7→
(
−a b
−3b −a

)
This establishes a bijective homomorphism between K and Q(i

√
3), proving

that the two fields are isomorphic.

Exercise 1.17 Let ϕ : K → L be a non-zero homomorphism, where K and L
are fields. Show that ϕ is a monomorphism.

Proof. Given ϕ : K → L is a non-zero homomorphism. We want to show that
ϕ is a monomorphism.

Let a, b be arbitrary elements in K such that ϕ(a) = ϕ(b). We need to prove
that a = b.

Consider the equation ϕ(a) = ϕ(b). Since ϕ is a homomorphism, it preserves
the field operations, and we have:

ϕ(a) = ϕ(b) =⇒ ϕ(a− b) ∈ kerϕ = {0}

Now, since ϕ is non-zero, it cannot map all elements to zero. Therefore,
ϕ(a− b) = 0 implies a− b = 0, and consequently, a = b.

This shows that if ϕ(a) = ϕ(b), then a = b, proving that ϕ is injective.
Therefore, ϕ : K → L is a monomorphism.

Exercise 1.20 What happens to the construction of Q(D) if D is a field?
From textbook and lecture, we gives a way to construct a field out of an arbi-

trary integral domain by let P = D(D/ {0}) = (a, b) : a, b ∈ D, b ̸= 0.Previously,
we also learnt that every finite integral domain is a field, so the condition will
be less restrict.

Field of Fractions (Q(D)): If D is a field, then every nonzero element in
D already has a multiplicative inverse in D. Therefore, when construct Q(D)
(the field of fractions of D), it will essentially get back D itself because every
element in D is already invertible.
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Smallest Field Containing D: The statement that Q(D) is the smallest
field containing D means that any field containing D must also contain Q(D).

Let D be a field. The field of rational functions over D, denoted Q(D), is
defined as the set of all rational functions:

Q(D) =

{
f(D)

g(D)
| f(D), g(D) are polynomials in D, g(D) ̸= 0

}
Here, f(D) and g(D) are polynomials with coefficients in D, and g(D) is not

the zero polynomial.
So, if D is already a field, then Q(D) = D, and there is not anything new

or additional from the construction. In this case, D itself is the smallest field
containing D, and Q(D) is just D, namely Q(D) ≃ D.

Exercise 1.22 Write down the multiplication table for Z7 , and list the in-
verses of all the non-zero elements.

Multiplication Table for Z7:

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

List of Inverses in Z7 :

Inverse of 1 is 1 (since 1 · 1 ≡ 1 (mod 7)).

Inverse of 2 is 4 (since 2 · 4 ≡ 1 (mod 7)).

Inverse of 3 is 5 (since 3 · 5 ≡ 1 (mod 7)).

Inverse of 4 is 2 (since 4 · 2 ≡ 1 (mod 7)).

Inverse of 5 is 3 (since 5 · 3 ≡ 1 (mod 7)).

Inverse of 6 is 6 (since 6 · 6 ≡ 1 (mod 7)).

9. Prove that the group of units of a commutative ring with unity is in fact a
group.

Proof. Let R be a commutative ring with unity, and R∗ be the set of units in
R. Given R is a commutative ring, an element a in R is a unit if there exists b
in R such that ab = ba = 1. Let’s check for Group Axioms:
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1. Associativity(G1): The multiplication in the ring is associative, so (ab)c =
a(bc) for all a, b, c in R∗.

2. Identity Element(G2): The identity element in R∗ is the multiplicative
identity of the ring, denoted by 1, because for any unit a in R∗, a · 1 = 1 ·a = a.

3. Inverse Element(G3): For any unit a in R∗, there exists b such that
ab = ba = 1, and b is the inverse of a.

Since R∗ satisfies all the group axioms, it is indeed a group. Therefore, the
group of units of a commutative ring with unity forms a group.

10. Describe an infinite field with prime characteristic.
Take the field of fractions of polynomials in Fp[x]. The field Fp(X) is defined

as follows:

Fp(X) =

{
f

g
| f, g ∈ Fp[x], g ̸= 0

}
This represents the rational functions in the indeterminate X with coeffi-

cients in Fp, where Fp is a synonym for Z/pZ. In other words, the elements of
Fp(X) are ratios of polynomials in Fp[X]. The field Fp(X) is infinite because it
contains elements like 1, X, X2, and so on. It has a characteristic of p because
it contains Fp.
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