Math 4108 HW2

Pengfei Zhu

January 17, 2024

Exercise 1.4 Prove the equivalence of (R9) and (R9)'?

Proof.

 \Rightarrow Assume (R9') holds true, want to show that (R9) also holds.

Consider any elements a, b, c in the ring R with $c \neq 0$. Assume ca = cb. Subtract cb from both sides:

ca - cb = 0

Factor out c on the left side:

c(a-b) = 0

Now, since $c \neq 0$, given that a = b from (R9), which implies (a - b) = 0 Then c(a - b) = 0 implies that (a - b) = 0 Therefore, (R9) implies (R9'), that is, if R is a ring with no divisors of zero, then cancellation laws hold in R.

 \Leftarrow Assume (R9) holds true. We want to show that (R9') also holds. Consider any elements a, b in the ring R such that ab = 0, and $a \neq 0$:

Since ab = 0 and $a \neq 0$, multiply right side by a:

ab = a0

which implies b = 0, which satisfy cancellation. Similarly, if $b \neq 0$, multiply right side by a:

$$ab = 0b$$

which implies a = 0, which satisfy cancellation. This shows that R has no zero divisors Therefore, (R9') implies (R9). As a result, there is equivalence of (R9) and (R9)'.

Exercise 1.5 Show that every finite integral domain is a field.

wts: the existence of (nonzero) inverses within finite integral domain

Proof. Suppose R be a finite integral domain with unity, and let r be a nonzero element of R where $r \neq 0, 1$

Consider the products rr^1, rr^2, \ldots, rr^n . Suppose $rr^i = rr^j$ with some i, j, i < j then $r^i = r^j$ by cancellation. Then $r^i - r^j = 0$ and since i < j, so r^{j-i} is in R.We have $r^i(1-r^{j-i}) = r^i - r^j = 0$. As r is non zero and R is an integral

domain so r_i is non zero. But then $1 - r^{j-i} = 0$ then $r^{j-i} = 1$. It follows that as $r^{j-i-1}r = 1$. Hence r is a unit with inverse r^{j-i-1}

Then, $1 \in R$ equals $r \cdot r^{j-i-1}$ for some i,j, implying that r is invertible. By definition, the integral domain, which is a commutative ring, that satisfies the existence of inverses is a field.

Exercise 1.7 Let $i = \sqrt{-1}$. Show that, by contrast with Example 1.2, the ring $R = a + bi\sqrt{2}$: $a, b \in Z$ has group of units 1,-1.

Existence of units:

For $a + bi\sqrt{2}$, consider $(1 + 0i\sqrt{2})$, which is equivalent to 1. This is the multiplicative identity in R, and thus, 1 is a unit.

consider $(0 - 1i\sqrt{2})$, which is equivalent to -1. This is also a unit.

No other units exist:

Suppose $a + bi\sqrt{2}$ is a unit in R other than 1 and -1. This implies there exists $c + di\sqrt{2}$ such that $(a + bi\sqrt{2})(c + di\sqrt{2}) = 1$. Expanding and comparing real and imaginary parts, we get two equations:

$$ac - 2bd = 1$$

 $ad + bc = 0$

From the second equation, we can solve for $d = -\frac{bc}{a}$. Substituting this into the first equation, we get $ac + 2b^2c = 1$. Rearranging, $ac = 1 - 2b^2c$. This implies ac is odd, but $1 - 2b^2c$ is even, leading to a contradiction. Therefore, there are no units in R other than 1 and -1. In conclusion, the group of units of is $\{1, -1\}$.

Exercise 1.13 Show that a commutative ring with unity having no proper ideals is a field

To show a ring R is a field, we need to show it has multiplicative inverse similar to last exercise.

Let R be a non-zero commutative ring with unity, and let a be any non-zero element of R, then Ra is the set of ideal R

$$Ra = \{r_1a, r_2a \dots\}$$

Let $r_1a, r_2a \in R$ then $r_1a - r_2a = (r_1 - r_2)a \in Ra$ if $r \in R$, then $r(r_1a) = (rr_1)a \in R$ As a result, Ra is an ideal. Given that R has no proper ideal, then Ra = R and $1 \in R = Ra$. There exist an element b in R such that ba = 1. That is to say, R contains inverse of each other, so R is a field.

Exercise 1.15 (i) Show that the set $K = \{ \begin{pmatrix} a & b \\ -3b & a \end{pmatrix} : a, b \in Q \}$ is a field with respect to matrix addition and multiplication.

To show that the set K is a field with respect to matrix addition and multiplication, we need to demonstrate that K satisfies the field axioms. Matrix Addition:

1. Closure under Addition:

$$A + B = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ -3(b_1 + b_2) & a_1 + a_2 \end{pmatrix} \in K$$

- 2. Associativity of Addition: Matrix addition is inherently associative.
- 3. Existence of Additive Identity: $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is the additive identity in K.

4. Existence of Additive Inverse: For any $A \in K$, $-A = \begin{pmatrix} -a & -b \\ 3b & -a \end{pmatrix} \in K$.

Matrix Multiplication:

1. Closure under Multiplication:

$$AB = \begin{pmatrix} a_1a_2 - 3b_1b_2 & a_1b_2 + b_1a_2 \\ -3(a_1b_2 + b_1a_2) & -3b_1b_2 + a_1a_2 \end{pmatrix} \in K$$

- 2. Associativity of Multiplication: Matrix multiplication is inherently associative.
- 3. Existence of Multiplicative Identity: $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the multiplicative identity in K.
- 4. Existence of Multiplicative Inverse: For any $A \in K$ (except for the zero matrix), $A^{-1} = \frac{1}{a_1^2 + 3b_1^2} \begin{pmatrix} a_1 & -b_1 \\ 3b_1 & a_1 \end{pmatrix} \in K.$

By showing these axioms above, the set K is a field.

(ii) Show that K is isomorphic to the field $Q(i\sqrt{3})$ defined in the previous exercise.

To show that K is isomorphic to the field $Q(i\sqrt{3})$, we need to find a bijective homomorphism between the two fields. Let's denote the elements of K as $a + b\epsilon$, where $a, b \in Q$ and ϵ is an indeterminate satisfying $\epsilon^2 = -3$.

The field K consists of matrices of the form:

$$A = \begin{pmatrix} a & b \\ -3b & a \end{pmatrix}$$

Now, let's consider the field $Q(i\sqrt{3})$, where elements are of the form $a+bi\sqrt{3}$. We can define a mapping $\phi: K \to Q(i\sqrt{3})$ as follows:

$$\phi: A \mapsto a + bi$$

Here, i in $Q(i\sqrt{3})$ corresponds to the matrix $\begin{pmatrix} 0 & 1 \\ -3 & 0 \end{pmatrix}$ in K. The homomorphism ϕ preserves addition and multiplication:

1.
$$\phi(A_1 + A_2) = \phi(A_1) + \phi(A_2)$$

2.
$$\phi(A_1 \cdot A_2) = \phi(A_1) \cdot \phi(A_2)$$

Now, let's explicitly define ϕ :

$$\phi: \begin{pmatrix} a & b \\ -3b & a \end{pmatrix} \mapsto a + bi$$

The inverse mapping ϕ^{-1} can be defined as:

$$\phi^{-1}: a + bi \mapsto \begin{pmatrix} -a & b \\ -3b & -a \end{pmatrix}$$

This establishes a bijective homomorphism between K and $Q(i\sqrt{3})$, proving that the two fields are isomorphic.

Exercise 1.17 Let $\phi : K \to L$ be a non-zero homomorphism, where K and L are fields. Show that ϕ is a monomorphism.

Proof. Given $\phi: K \to L$ is a non-zero homomorphism. We want to show that ϕ is a monomorphism.

Let a, b be arbitrary elements in K such that $\phi(a) = \phi(b)$. We need to prove that a = b.

Consider the equation $\phi(a) = \phi(b)$. Since ϕ is a homomorphism, it preserves the field operations, and we have:

$$\phi(a) = \phi(b) \implies \phi(a-b) \in ker\phi = \{0\}$$

Now, since ϕ is non-zero, it cannot map all elements to zero. Therefore, $\phi(a-b) = 0$ implies a-b = 0, and consequently, a = b.

This shows that if $\phi(a) = \phi(b)$, then a = b, proving that ϕ is injective. Therefore, $\phi: K \to L$ is a monomorphism.

Exercise 1.20 What happens to the construction of Q(D) if D is a field?

From textbook and lecture, we gives a way to construct a field out of an arbitrary integral domain by let $P = D(D/\{0\}) = (a, b) : a, b \in D, b \neq 0$. Previously, we also learnt that every finite integral domain is a field, so the condition will be less restrict.

Field of Fractions $(\mathbf{Q}(\mathbf{D}))$: If D is a field, then every nonzero element in D already has a multiplicative inverse in D. Therefore, when construct Q(D) (the field of fractions of D), it will essentially get back D itself because every element in D is already invertible.

Smallest Field Containing D: The statement that Q(D) is the smallest field containing D means that any field containing D must also contain Q(D).

Let D be a field. The field of rational functions over D, denoted Q(D), is defined as the set of all rational functions:

$$Q(D) = \left\{ \frac{f(D)}{g(D)} \mid f(D), g(D) \text{ are polynomials in } D, \ g(D) \neq 0 \right\}$$

Here, f(D) and g(D) are polynomials with coefficients in D, and g(D) is not the zero polynomial.

So, if D is already a field, then Q(D) = D, and there is not anything new or additional from the construction. In this case, D itself is the smallest field containing D, and Q(D) is just D, namely $Q(D) \simeq D$.

Exercise 1.22 Write down the multiplication table for Z_7 , and list the inverses of all the non-zero elements.

Multiplication Table for Z_7 :

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

List of Inverses in Z_7 :

Inverse of 1 is 1 (since $1 \cdot 1 \equiv 1 \pmod{7}$). Inverse of 2 is 4 (since $2 \cdot 4 \equiv 1 \pmod{7}$). Inverse of 3 is 5 (since $3 \cdot 5 \equiv 1 \pmod{7}$). Inverse of 4 is 2 (since $4 \cdot 2 \equiv 1 \pmod{7}$). Inverse of 5 is 3 (since $5 \cdot 3 \equiv 1 \pmod{7}$). Inverse of 6 is 6 (since $6 \cdot 6 \equiv 1 \pmod{7}$).

9. Prove that the group of units of a commutative ring with unity is in fact a group.

Proof. Let R be a commutative ring with unity, and R^* be the set of units in R. Given R is a commutative ring, an element a in R is a unit if there exists b in R such that ab = ba = 1. Let's check for Group Axioms:

1. Associativity(G1): The multiplication in the ring is associative, so (ab)c = a(bc) for all a, b, c in R^* .

2. Identity Element(G2): The identity element in R^* is the multiplicative identity of the ring, denoted by 1, because for any unit a in R^* , $a \cdot 1 = 1 \cdot a = a$.

3. Inverse Element(G3): For any unit a in R^* , there exists b such that ab = ba = 1, and b is the inverse of a.

Since R^* satisfies all the group axioms, it is indeed a group. Therefore, the group of units of a commutative ring with unity forms a group.

10. Describe an infinite field with prime characteristic.

Take the field of fractions of polynomials in Fp[x]. The field $F_p(X)$ is defined as follows:

$$F_p(X) = \left\{ \frac{f}{g} \mid f, g \in F_p[x], g \neq 0 \right\}$$

This represents the rational functions in the indeterminate X with coefficients in F_p , where F_p is a synonym for Z/pZ. In other words, the elements of $F_p(X)$ are ratios of polynomials in $F_p[X]$. The field $F_p(X)$ is infinite because it contains elements like 1, X, X^2 , and so on. It has a characteristic of p because it contains F_p .