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Problem 1. Assume that A is a matrix that can be diagonalized. Show that

det(eAt) = eTr(A)t

Since A is diagonalizable, it can be expressed as A = PDP−1, where P is
an invertible matrix and D is a diagonal matrix whose diagonal entries are the
eigenvalues λ1, λ2, . . . , λn of A. The exponential of A is given by:

eAt = PeDtP−1.

The expression of the exponential for the diagonalizable matrix:

eA =

∞∑
n=0

(PDP−1)n

n!
=

∞∑
n=0

PDnP−1

n!
= P

( ∞∑
n=0

Dn

n!

)
P−1

The matrix eDt is diagonal with entries eλit, thus:

det(eAt) = det(PeDtP−1) = det(P ) det(eDt) det(P−1) = det(eDt) = eλ1t+λ2t+···+λnt.

The trace of A is the sum of its eigenvalues:

Tr(A) = λ1 + λ2 + · · ·+ λn.

Thus, we have:
det(eAt) = eTr(A)t.

Problem 2. Let

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Find the eigenvalues and eigenvectors of the matrix 2I − P − P 3.

2I−P−P 3 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

−

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

−

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2
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2− λ −1 0 −1
−1 2− λ −1 0
0 −1 2− λ −1
−1 0 −1 2− λ

 .

The determinant of the obtained matrix is λ(λ− 4)(λ− 2)2. Solve the equation
λ(λ − 4)(λ − 2)2 = 0.The roots are: λ1 = 4, λ2 = 2, λ3 = 2, λ4 = 0. Next, find
the eigenvectors for each eigenvalue:
For λ = 4: 

2− λ −1 0 −1
−1 2− λ −1 0
0 −1 2− λ −1
−1 0 −1 2− λ

 =


−2 −1 0 −1
−1 −2 −1 0
0 −1 −2 −1
−1 0 −1 −2

 ,

The eigenvector of this matrix is


−1
1
−1
1

.
For λ = 2:

2− λ −1 0 −1
−1 2− λ −1 0
0 −1 2− λ −1
−1 0 −1 2− λ

 =


0 −1 0 −1
−1 0 −1 0
0 −1 0 −1
−1 0 −1 0

 ,

The eigenvectors of this matrix is


−1
0
1
0

 ,


0
−1
0
1

.
For λ = 0:

2− λ −1 0 −1
−1 2− λ −1 0
0 −1 2− λ −1
−1 0 −1 2− λ

 =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 ,

The eigenvector of this matrix is


1
1
1
1

.
Problem 3. Solve the system

du⃗

dt
= Au⃗, u⃗(0) =

[
4
1

]
.

where

A =

[
−2 3
2 −3

]
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Compute limt→∞ u⃗(t).
We first find the eigenvalue and eigenvector of the matrix A, we use the trick

to compute 2× 2 matrix, and get:

−5 :

[
−1
1

]
→ e−5t

[
−1
1

]

0 :

[
3
2

]
→ e0t

[
3
2

]
u⃗(t) = c1e

−5t

[
−1
1

]
+ c2e

0t

[
3
2

]
,where c1, c2 are constants.

Applying the initial condition u⃗(0) =

[
4
1

]
, we have:

[
4
1

]
= c1

[
−1
1

]
+ c2

[
3
2

]
c1 = −1 and c2 = 1

To compute limt→∞ u⃗(t), we observe the terms involving e−5t and e0t. Since

e−5t approaches 0 as t goes to infinity, the term c1e
−5t

[
−1
1

]
will vanish, leaving

us with:

lim
t→∞

u⃗(t) = lim
t→∞

(
c1e

−5t

[
−1
1

]
+ c2e

0t

[
3
2

])
=

[
3
2

]

Problem 4. For the matrix A =

[
0 1
1 0

]
, find eAt using the power series.

The matrix A has two eigenvalues λ1 = +1 and λ2 = −1 (corresponding to
exponentially growing and decaying solutions to dx⃗

dt = Ax⃗, respectively). The
corresponding eigenvectors are:

x⃗1 =

[
1
1

]
, x⃗2 =

[
1
−1

]
.

Hence, the matrix exponential should be:

eAt =

[
1 1
1 −1

] [
et 0
0 e−t

] [
1 1
1 −1

]−1

=

[
1 1
1 −1

] [
et

e−t

]
1

2

[
1 1
1 −1

]
=

1

2

[
et e−t

et −e−t

] [
1 1
1 −1

]
=

1

2

[
et + e−t et − e−t

et − e−t et + e−t

]
.
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Problem 5. Generally, eAeB ̸= eA+B . Check this for the given matrices:

A =

[
1 4
0 0

]
, B =

[
0 −4
0 0

]
, A+B =

[
1 0
0 0

]
.

Calculate eA, eB , and eA+B and verify whether eAeB = eA+B .

eA =

[
e −4
0 1

]
·
[
1 4
0 1

]
=

[
e 4(−1 + e)
0 1

]
eB =

[
1 0
0 1

]
+

[
0 −4
0 0

]
=

[
1 −4
0 1

]
eA+B =

[
e 0
0 1

]
eAeB =

[
e −4 + 4e
0 1

]
·
[
1 −4
0 1

]
=

[
(e · 1) + (−4 + 4e) · 0 (e · −4) + (−4 + 4e) · 1

(0 · 1) + (1 · 0) (0 · −4) + (1 · 1)

]
=

[
e −4
0 1

]
As shown, eAeB ̸= eA+B .

Problem 6. A particular solution to the differential equation

du⃗

dt
= Au⃗− b⃗,

where b⃗ is constant, is given by

u⃗p = A−1⃗b

if A is invertible. The complete solution is u⃗p + u⃗n where u⃗n are solutions to
du⃗
dt = Au⃗.

Find the complete solution for the equations:

a)
du

dt
= u− 4,

The general solution un to the homogeneous equation du
dt = u is:

un = Cet

where C is a constant.

A particular solution up can be found by assuming up = k where k is a
constant. Substituting up into the equation gives:

0 = k − 4 =⇒ k = 4.

Thus, the complete solution is:

u(t) = up + un = 4 + Cet.
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b)
du⃗

dt
=

[
1 0
1 1

]
u⃗−

[
4
6

]
.

A−1 =

[
1 0
−1 1

]
.

Multiplying A−1 by b⃗ gives the particular solution u⃗p:

u⃗p = A−1⃗b =

[
4
2

]
.

The homogeneous solution u⃗n solves du⃗
dt = Au⃗. The eigenvalues of A are

both 1, thus u⃗n can be written as:

u⃗n = C1e
t

[
0
1

]
+ C2e

t

[
1
1

]
,

where C1 and C2 are constants.

Hence, the complete solution is:

u⃗(t) = u⃗p + u⃗n =

[
4
2

]
+ C1e

t

[
0
1

]
+ C2e

t

[
1
1

]
.

Problem 7. The Pauli matrices are given by

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
,

a) Show that every self-adjoint matrix H = H∗ can be written as

H = aI2 + bσ1 + cσ2 + dσ3

where a, b, c, d are real numbers.

First note that any self-adjoint matrix can be written in terms of the Pauli
matrices and the identity matrix.

Let H be a self-adjoint matrix. Then, by definition, H∗ = H. We can
write H in terms of the Pauli matrices and the identity matrix as follows:

H = aI2 + bσ1 + cσ2 + dσ3

where a, b, c, d are complex numbers.

To show that a, b, c, d must be real, we consider the condition for H to be
self-adjoint:

H∗ = H
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For H to be self-adjoint, we need:

H = H∗

aI2 + bσ1 + cσ2 + dσ3 = a∗I2 + b∗σ1 + c∗σ2 + d∗σ3

Since a, b, c, d are equal to their complex conjugates, they must be real.
Therefore, we can write H as

H = aI + bσ1 + cσ2 + dσ3

where a, b, c, d are real numbers.

b) Compute the eigenvalues of bσ1 + cσ2 + dσ3 and use this to compute the
eigenvalues of H. (Hint: Show that (bσ1 + cσ2 + dσ3)

2 = (b2 + c2 + d2)I2
and note that the trace of bσ1 + cσ2 + dσ3 is zero.)

Let B = bσ1 + cσ2 + dσ3. We compute:

B2 = (bσ1 + cσ2 + dσ3)
2 = b2σ2

1 + c2σ2
2 + d2σ2

3 + (cross terms).

Using properties of Pauli matrices:

σ2
1 = σ2

2 = σ2
3 = I2,

σiσj + σjσi = 0 for i ̸= j.

Thus, B2 = (b2 + c2 + d2)I2.

Since B2 = (b2 + c2 + d2)I2, the eigenvalues of B are ±
√
b2 + c2 + d2.

Considering H = aI2 +B, the eigenvalues of H are:

a+
√
b2 + c2 + d2 and a−

√
b2 + c2 + d2.

Problem 8.

a) Let T be an upper triangular n×nmatrix with diagonal elements a1, a2, . . . , an.
Show that

(T − a1I)(T − a2I) · · · (T − anI) = zero matrix

In other words, the matrix T is a ‘root’ of the characteristic polynomial.

Given an upper triangular matrix T , consider the subspace W spanned
by the standard basis vectors ϵ1, ϵ2, . . . , ϵn−1. This subspace is invariant
under the action of T , which means that T maps vectors in W to other
vectors in W . The matrix B, which is the representation of T restricted
to W , is upper triangular and is obtained by deleting the last row and
column of T .

The characteristic polynomial of B is g(x) = (x−a1)(x−a2) · · · (x−an−1).
By the inductive hypothesis, we assume that g(B) = 0 for matrices of size
less than n, which implies g(B)ϵi = 0 for all i ≤ n− 1.
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Considering the characteristic polynomial f(x) = (x− a1)(x− a2) · · · (x−
an) of the full matrix T , we have f(T ) = (T − anI)g(T ). It follows that
f(T )ϵi = 0 for all i ≤ n− 1, given that g(T )ϵi = 0 for these indices.

To show that f(T )ϵn = 0, we note that (T−anI)ϵn is a linear combination
of ϵ1, . . . , ϵn−1 due to the upper triangular structure of T . Thus:

f(T )ϵn = g(T )(T−anI)ϵn = g(T ) (r1ϵ1 + . . .+ rn−1ϵn−1) = r1g(T )ϵ1+. . .+rn−1g(T )ϵn−1 = 0.

As f(T )ϵi = 0 for all basis vectors ϵi, where i = 1, . . . , n, and since the
action of a linear operator on the basis vectors determines the operator
entirely, it follows that f(T ) = 0, the zero matrix.

b) Using the Schur factorization A = UTU∗ where U is unitary and T up-
per triangular, prove Cayley’s theorem which states that the matrix is a
root of its characteristic polynomial. More precisely, if the characteristic
polynomial of A is given by

(−1)nλn + (−1)n−1Tr(A)λn−1 + · · ·+ det(A)

then
(−1)nAn + (−1)n−1Tr(A)An−1 + · · ·+ (det(A))In = 0

From the Schur factorization A = UTU∗, where T has the eigenvalues of
A on its diagonal, we know that T satisfies its characteristic polynomial.
Thus, we have

(T − λ1I)(T − λ2I) · · · (T − λnI) = 0,

where λi are the eigenvalues of A.

The characteristic polynomial p(λ) of A can be written as:

p(λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn).

Evaluating this polynomial at A gives:

p(A) = (−1)n(A− λ1I)(A− λ2I) · · · (A− λnI).

Substituting A with UTU∗ and considering UU∗ = I, we get:

p(A) = (−1)n(UTU∗ − λ1I)(UTU∗ − λ2I) · · · (UTU∗ − λnI).

By multiplying out these terms and using the fact that T is a root of its
characteristic polynomial, we obtain:

p(A) = (−1)nU(T − λ1I)(T − λ2I) · · · (T − λnI)U
∗ = 0.

Thus, A also satisfies its characteristic polynomial.
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