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Problem 1. Assume that A is a matrix that can be diagonalized. Show that
det(eAt) _ eTr(A)t

Since A is diagonalizable, it can be expressed as A = PDP~!, where P is
an invertible matrix and D is a diagonal matrix whose diagonal entries are the
eigenvalues A1, Ag, ..., A, of A. The exponential of A is given by:

et = pePtp—1.
The expression of the exponential for the diagonalizable matrix:

= (PDP Y & pDnpt =D\
eA:Z(m):Zm:P<Zm>P1

n=0 n=0 n=0
The matrix eP? is diagonal with entries e*t, thus:
det(et) = det(PeP'P~1) = det(P) det(eP?) det(P~ 1) = det(eP?) = eMriHAatttint
The trace of A is the sum of its eigenvalues:

Tr(A) =X+ Ao+ + A\

Thus, we have:
det(eA?) = T,

Problem 2. Let

01 00
0 01 0
P_OOOl
10 0 0

Find the eigenvalues and eigenvectors of the matrix 2I — P — P3.

2 000 Jo100] [000°1 2 -1 0 -1
s 00200 0010 |to0oo0o0 _|-1 2 -1 0
2P=PR=10 0 2 0l {o o0 1] fo 100" |0 -1 2 -1

0002 |tooo 0010 |-1 0 -1 2



-1 0 -1 2-2A

The determinant of the obtained matrix is A(A — 4)(X — 2)2. Solve the equation
AA —4)(X —2)2 = 0.The roots are: \; = 4, Ay = 2, A3 = 2, \4 = 0. Next, find
the eigenvectors for each eigenvalue:

For A = 4:
2—X -1 0 -1 -2 -1 0 -1
-1 2-X -1 0 -1 -2 -1 0
0 -1 2-Xx 11| |0 -1 -2 -—1|’
-1 0 -1 2-A -1 0 -1 =2
-1
The eigenvector of this matrix is _11 .
1
For A = 2:
2—Xx -1 0 -1 o -1 0 -1
-1 2-X -1 0 _|-1 0 -1 0
0 -1 2-Xx —-11] |0 -1 0 -=1|’
-1 0 -1 2-=-A -1 0 -1 0
-1 0
. . . 0 -1
The eigenvectors of this matrix is 1110
0 1
For A =0:
2—-X -1 0 -1 2 -1 0 -1
-1 2-X -1 0 -1 2 -1 0
0 -1 2-X —-1( |0 -1 2 —=1|"
-1 0 -1 2-2A -1 0 -1 2
1
The eigenvector of this matrix is 1 .
1

Problem 3. Solve the system

du L |4
E—Au, u(O)—{}

where



Compute lim;_, o @(t).
We first find the eigenvalue and eigenvector of the matrix A, we use the trick
to compute 2 x 2 matrix, and get:

| —5t |1
iy { X } Se [ X ]
|3 ot |3
0: [2] Se M
(t) = cre ot {_1 } + coe® B] ,where ¢1, co are constants.

Applying the initial condition @(0) = {ﬂ, we have:

il =[5+ 3

ci=—-landcy =1

To compute lim;_, . @(t), we observe the terms involving e > and €. Since

e~ approaches 0 as t goes to infinity, the term c;e~5¢

o s [1 o [31) 3
Jim a(t) = Jim <Cle [1 ] +ee [QD - [2]

01

1 0]’
The matrix A has two eigenvalues A\; = +1 and Ay = —1 (corresponding to

exponentially growing and decaying solutions to ‘fl—f = AZ, respectively). The

corresponding eigenvectors are:

-l a-[1)

Hence, the matrix exponential should be:

a1 1]t 0]t 1]t
T —1 o et 1 -1

{_11} will vanish, leaving

us with:

Problem 4. For the matrix A = [ find e4? using the power series.



Problem 5. Generally, e*ef # eA*t8. Check this for the given matrices:

1 4 0 -4 10
A‘b(* B=1o oy A+B_k J'
A+B

B _ ,A+B

and verify whether e“e

oy S - )

Calculate e, e, and e e

0 1] o 1]~ 1o 1
=lo 1+ )=l 7]
GA+B _ [g ﬂ
-y 1P [ RER CR )

As shown, edeB # eAtB,

Problem 6. A particular solution to the differential equation

du -
— = Au — b,
dt
where b is constant, is given by
i, =A%

if A is invertible. The complete solution is @, + u, where i, are solutions to
di __ —
Find the complete solution for the equations:

a)

du
— =u—4
dt ’
The general solution u,, to the homogeneous equation % = is:
U, = Ceét

where C' is a constant.

A particular solution u, can be found by assuming u, = k where k is a
constant. Substituting u, into the equation gives:

0=k—4 = k=4.

Thus, the complete solution is:

u(t) = up +u, =4+ Ce'.



di _[1 0]. [4
a 11" el
10
A[_ll].

Multiplying A~! by b gives the particular solution ):

i, =A'F= E] .

The homogeneous solution u,, solves % = Au. The eigenvalues of A are

both 1, thus i, can be written as:

- 0 1
i, = Ciét [J + Cyet L] ,

where C'; and Cy are constants.

Hence, the complete solution is:
U(t) = Uy + Uy = E} + Chét [ﬂ + Cyet [ﬂ .

Problem 7. The Pauli matrices are given by

o 1 o —i 1o
01—1 0l JZ_i ol 0—3_0 1!

a) Show that every self-adjoint matrix H = H* can be written as
H = aly + boy + coy + dos

where a, b, ¢, d are real numbers.

First note that any self-adjoint matrix can be written in terms of the Pauli
matrices and the identity matrix.

Let H be a self-adjoint matrix. Then, by definition, H* = H. We can
write H in terms of the Pauli matrices and the identity matrix as follows:

H = als + boy + cos + dos

where a, b, ¢, d are complex numbers.

To show that a, b, ¢, d must be real, we consider the condition for H to be
self-adjoint:
H*=H



For H to be self-adjoint, we need:
H=H"
aly +boy +cog +dog =a*ly +b o1 + c'og +d o3

Since a, b, c,d are equal to their complex conjugates, they must be real.
Therefore, we can write H as

H =al +boy + cos + dog
where a, b, ¢, d are real numbers.

b) Compute the eigenvalues of boy + coe + dos and use this to compute the
eigenvalues of H. (Hint: Show that (boy + cog + do3)? = (b + c® + d?) I,
and note that the trace of boy + coa + dog is zero.)

Let B = bo1 + cos + dos. We compute:
B? = (boy + cop + dos)? = b2l + o2 + d*o2 + (cross terms).

Using properties of Pauli matrices:
Ufzagzagzlg,
0i0j +o0j0; =0 fori# j.
Thus, B? = (b* + ¢ + d?) L.
Since B? = (b? 4 ¢* + d?)I5, the eigenvalues of B are +/b2 + 2 + d2.
Considering H = als + B, the eigenvalues of H are:

a+Vb2+c2+d? and a— Vb%+c?+d2.

Problem 8.

a) Let T be an upper triangular n xn matrix with diagonal elements ay, as, . . . , ;.
Show that

(T —a  I)(T —axl)--- (T — a,I) = zero matrix

In other words, the matrix T is a ‘root’ of the characteristic polynomial.

Given an upper triangular matrix 7', consider the subspace W spanned
by the standard basis vectors €1, ¢€s,...,€6,_1. This subspace is invariant
under the action of T', which means that T" maps vectors in W to other
vectors in W. The matrix B, which is the representation of 7' restricted
to W, is upper triangular and is obtained by deleting the last row and
column of T

The characteristic polynomial of B is g(z) = (z—a1)(x—az) - - (x—ap—_1).
By the inductive hypothesis, we assume that g(B) = 0 for matrices of size
less than n, which implies g(B)e; = 0 for all i <n — 1.



Considering the characteristic polynomial f(z) = (x —a1)(x —a2) - - (. —
an) of the full matrix T, we have f(T) = (T — a,I)g(T). It follows that
f(T)e; =0 for all i <n — 1, given that g(T)e; = 0 for these indices.

To show that f(T)e, = 0, we note that (T'—a,I)e, is a linear combination
of €1,...,€,_1 due to the upper triangular structure of T". Thus:

fMen =g(T)(T—anl)e, = g(T) (r1e1+ ... +rn16n-1) = r1g(T)er+. . - 4rn_19(T)en—1 = 0.

As f(T)e; = 0 for all basis vectors ¢;, where ¢ = 1,...,n, and since the
action of a linear operator on the basis vectors determines the operator
entirely, it follows that f(T") = 0, the zero matrix.

Using the Schur factorization A = UTU* where U is unitary and T up-
per triangular, prove Cayley’s theorem which states that the matrix is a
root of its characteristic polynomial. More precisely, if the characteristic
polynomial of A is given by

(=)™ A" + (=1)" ' Tr(A)A™ ! + -+ 4 det(A)

then
(—1)"A™ + (—l)n_lTr(A)A”_1 + -4 (det(A)I, =0

From the Schur factorization A = UTU*, where T has the eigenvalues of
A on its diagonal, we know that T satisfies its characteristic polynomial.
Thus, we have

(T — MI)(T = XoI) -+ (T = \I) =0,

where \; are the eigenvalues of A.

The characteristic polynomial p(A) of A can be written as:
PA) = (=D"A=A)A=A2) - (A= Ap).
Evaluating this polynomial at A gives:
p(A) = (—1D)™"(A—MID)(A— D) (A=A D).
Substituting A with UTU* and considering UU* = I, we get:
p(A) = (=1)"(UTU* — M\ I)(UTU* — X\oI) --- (UTU* — A\, 1).

By multiplying out these terms and using the fact that 7" is a root of its
characteristic polynomial, we obtain:

p(A) = (=1)"U(T — MI)(T = XoI) - (T — M\ )U* = 0.

Thus, A also satisfies its characteristic polynomial.



