
Math 3406 HW7

Pengfei Zhu

March 9, 2024

Problem 1. If A+ is the pseudo inverse of A, using the formulas for A+, show
that (A+A)2 = A+A and (AA+)2 = (AA+). Also verify that (A+A)T = (A+A)
and (AA+)T = (AA+). This is an explicit verification that AA+ and A+A are
projections.

From class, we have

A+A = R+C+CR = R+R = Projection onto row space of A

AA+ = CRR+C+ = CC+ = Projection onto column space of A

RR+ = I C+C = I

A+ = (ATA)−1AT

1. Show (A+A)2 = A+A

(A+A)2 = (A+A)(A+A)

= R+(RR+)R

= R+IR

= R+R

= A+A

Conceptually, (A+A)2 is the projection matrix onto the row space of
(A+A) which is equivalent to (A+A).

2. Show (AA+)2 = AA+

(AA+)2 = (AA+)(AA+)

= CC+CC+

= CIC+

= CC+

= AA+

Conceptually, (AA+)2 is the projection matrix onto the column space of
AA+ which is equivalent to AA+.
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3. Verify (A+A)T = A+A

(A+A)T = ((ATA)−1ATA)T

= IT

= I

= (ATA)−1ATA

= A+A

4. Verify (AA+)T = AA+

(AA+)T = (A+)TAT

= A((ATA)−1)TAT

= A((ATA)T )−1AT

= A(ATA)−1AT

= AA+

Problem 2. Compute A++, i.e., the pseudo-inverse of the pseudo-inverse of
A.

From class:

1. A+ = R+C+

2. R+ = RT (RRT )−1

3. C+ = (CTC)−1CT

We start by applying R+ and C+ to compute A+ and then A++

A+ = R+C+

A++ = (R+C+)+

= (C+)+(R+)+

= ((CTC)−1CT )+(RT (RRT )−1)+

= (CTC)−1CTCRRTR(RRT )−1

= (CTC)−1(CTC)CRRT (RRT )−1(RRT )

= ICRI

= CR

= A
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Problem 3. Let A be a 2× 2 matrix. Consider the following statements and
determine if they are true or false, providing a reason if true or a counterexample
if false:

1. The determinant of I +A is 1 + det(A).

False. The determinant of I+A is not necessarily 1+det(A). For example,
let

A =

(
a b
c d

)
.

Then

I +A =

(
1 + a b
c 1 + d

)
,

and
det(I +A) = (1 + a)(1 + d)− bc.

This is not necessarily equal to 1 + (ad− bc) = 1 + det(A).

2. The determinant of 4A is 4 det(A).

False. The determinant of 4A is 16 det(A). For a 2 × 2 matrix A, when
the matrix is multiplied by a scalar k, the determinant is multiplied by k2

because the matrix has two rows (and columns).

3. The determinant of AB −BA is always zero.

False. Consider the following example where A =

[
0 0
0 1

]
andB =

[
a b
c d

]
.

Then AB −BA is computed as

AB =

[
0 0
c d

]
and BA =

[
0 b
0 d

]
,

which yields

AB −BA =

[
0 0
c d

]
−
[
0 b
0 d

]
=

[
0 −b
c 0

]
with determinant bc. This is not zero unless b = 0 or c = 0.

4. If the entries in every row of a matrix A add to zero show that detA = 0.

If the entries of every row of a matrix A add to zero, then Ax⃗ = 0⃗ when
x⃗ = (1, . . . , 1)T , since each component of Ax⃗ is the sum of the entries in a row
of A. Since A has a non-zero nullspace, it is not invertible and det(A) = 0.
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5. Use row operations to compute the determinant of the matrix1 a a2

1 b b2

1 c c2


Using row operations and properties of the determinant, we have:

det

1 a a2

1 b b2

1 c c2

 = det

1 a a2

0 b− a b2 − a2

1 c c2


= (b− a) det

1 a a2

0 b− a b2 − a2

0 c− a c2 − a2


= (b− a) det

1 a a2

0 1 b+ a
1 c− a (c− a)(c− b)


= (b− a)(c− a)(c− b) det

1 a a2

0 1 b+ a
0 0 1


= (b− a)(c− a)(c− b) det

1 0 0
0 1 0
0 0 1


= (b− a)(c− a)(c− b).

Compute the determinant of
1 x1 x2

1 x3
1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

1 x4 x2
4 x3
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P is a polynomial with degree 3, and x2, x3, x4 are its roots, so

P (x) = λ(x− x2)(x− x3)(x− x4).

Thus, the given determinant is

P (x1) = λ(x1 − x2)(x1 − x3)(x1 − x4),

and finally, to figure out the leading coefficient λ, we have

λ = det

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

 := V3.

So induction, we have

λ = (x2 − x3)(x2 − x4)(x3 − x4).
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which, when expanded, becomes

det = (x2 − x1)(x3 − x1)(x4 − x1)(x3 − x2)(x4 − x2)(x4 − x3)

This represents the product of the differences between each pair of x vari-
ables, ensuring that each pair is considered exactly once

6. The Big Formula for the determinant has 24 terms if A is 4× 4. How many
terms include a13 and a22? Try to reason without writing down all 24 terms,
which could be a challenge.

We first write out the expression for this matrix:
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


The term that involves a13 and a22, we can isolate one terms from the general

formula for determinant as:

a13a22 det

[
a31 a34
a41 a44

]
= a13a22(a31a44 − a34a41)

So there are in total 2 terms that include a13 and a22.
The explanation as follows:
We select a13 and a22, and we are left with two rows (the third and the

fourth) and two columns (the first and the fourth) to fill the remaining two
positions in the term. There are 2! ways to do this (either by choosing the entry
from the third row and first column and the entry from the fourth row and
fourth column, or vice versa).Thus, without writing down all 24 terms, we can
reason that there are 2 terms in the determinant of A that include both a13 and
a22.

7. If the edge vectors of a parallelogram in R2 have lengths ∥a1∥ = 1 and
∥a2∥ = 2, what is the largest area the parallelogram could have?

From class, we talked about the area of the square transformed by S into
parallelogram as the determinant of an 2×2 matrix. And the area between two
vectors are the largest when two vectors are orthogonal to each other, so we can
construct such matrix as: [

1 0
0 2

]
and the area is the determinant which is 2.

Another way to explain this is using cross-product which represent the area
of the parallelogram spanned by two vector,

a1 × a2 = ∥a1∥∥a2∥ sin(θ)

To find the largest area, we let sin(θ) = 1, and thus area equals 2.
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8. (Hadamard’s Inequality) Prove that for any n×nmatrixA = [⃗a1, a⃗2, . . . , a⃗n],
the following inequality holds:

|det(A)| ≤ ∥a⃗1∥∥a⃗2∥ · · · ∥a⃗n∥.

Hint: Consider the factorization A = QR and show that the diagonal elements
|Rii| ≤ ∥a⃗i∥.

Proof. The determinant of A is given by:

det(A) = det(QR) = det(Q) det(R)

Since Q is orthogonal, det(Q) = ±1, and therefore:

det(A) = ±det(R)

The determinant of an upper triangular matrix, like R, is the product of its
diagonal elements:

det(R) = R11 ·R22 · . . . ·Rnn

The norm of each column vector a⃗i of A is at least as large as the absolute
value of the corresponding diagonal elementRii because each a⃗i can be expressed
as a linear combination of the orthonormal columns of Q with coefficients from
R. Hence, |Rii| ≤ ∥a⃗i∥ for all i.

Combining these facts, we find:

|det(A)| = |det(R)| = |R11 ·R22 · . . . ·Rnn| ≤ ∥a⃗1∥∥a⃗2∥ · · · ∥a⃗n∥
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