Math 3406 HW4

Pengfei Zhu

February 16, 2024

Problem 1. Give a reason or a counterexample for the following statements:

a) A and A^T have the same number of pivots.

True. The number of pivots of A is its column rank, r. We know that the column rank of A equals the row rank of A, which is the column rank of A^T . Hence, A^T must have the same number of pivots as A.

b) A and A^T have the same left null space. False.

Counterexample: Take any 1×2 matrix, $A = \begin{bmatrix} a & b \end{bmatrix}$. The left nullspace of A contains vectors in \mathbb{R} , while the left nullspace of A^T , which is the right nullspace of A, contains vectors in \mathbb{R}^2 , so they cannot be the same.

c) If the row space equals the column space then $A = A^T$. False.

Counterexample: Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Here, the row space and the column space are both equal to all of \mathbb{R}^2 (since A is invertible), but $A \neq A^T$.

d) If $A^T = -A$ then the row space of A equals the column space. **True**. The row space of A equals the column space of A^T , which for this particular A equals the column space of -A. Since A and -A have the same fundamental subspaces, by part (b) of the previous question, we conclude that the row space of A equals the column space of A.

Problem 2. Fredholm alternative: The equation $A\tilde{x} = \tilde{b}$ has a solution if and only if \tilde{b} is perpendicular to $N(A^T)$.

Proof.

 \Rightarrow If Ax = b has a solution, then b is perpendicular to $N(A^T)$.

If Ax = b has a solution, it means that b lies in the column space of A. Since any vector in the column space of A is perpendicular to any vector in $N(A^T)$, b must be perpendicular to $N(A^T)$. \Leftarrow If b is perpendicular to $N(A^T)$, then Ax = b has a solution.

If b is perpendicular to $N(A^T)$, it means that b lies in the column space of A. Consequently, b can be expressed as a linear combination of the columns of A, i.e., b = Ax for some x. Thus, the equation Ax = b has a solution.

Therefore, we have proven both directions of the Fredholm alternative Theorem. $\hfill \Box$

Problem 3. Suppose that A is 3×4 and B is 4×5 and AB = 0. So N(A) contains C(B). Deduce from the dimensions of N(A) and C(B) that rank(A) + rank $(B) \leq 4$.

By the fundamental theorem of linear algebra, the dimension of N(A) is

$$N(A) = 4 - \operatorname{rank}(A)$$

The dimension of C(B) is rank(B) since C(B) is spanned by the columns of B. Given that $C(B) \subseteq N(A)$, we have:

$$\operatorname{rank}(B) \le 4 - \operatorname{rank}(A)$$

Rearranging this inequality, we get:

$$\operatorname{rank}(A) + \operatorname{rank}(B) \le 4$$

Therefore, we have deduced from the dimensions of N(A) and C(B) that $\operatorname{rank}(A) + \operatorname{rank}(B) \leq 4$.

Problem 4. Prove or find a counterexample:

a) $\mathcal{C}(A^T A) = \mathcal{C}(A).$

False.

Counterexample, consider the case of where A is 1×4 matrix. Then $dimC(A^T A) = 1$, which does not match to the dimension of C(A) = 4, and thus $C(A^T A) \neq C(A)$.

b) $C(A^T A) = C(A^T).$

True.

Suppose A^T is a $m \times n$ matrix. Firstly, $C(A^T A) \in C(A^T)$ because any column in $C(A^T A)$ is a linear combination of columns in $C(A^T)$, and so every vector in $C(A^T A)$ is in the vector space of $C(A^T)$.

We then go on with the examination of the dimension applying the Fundamental Theorem of Linear Algebra:

$$dimC(A^TA) + dimN(A^TA) = n$$

Then, also notice:

$$dimC(A^T) + dimN(A) = n$$

because they are orthogonal complement, the column space of A transposes the null space of A.

$$dimC(A) + dimN(A) = n$$

As a result,

$$dimC(A^T A) = C(A^T)$$

c)
$$N(A^T A) = N(A^T)$$
.

False.

The most straightforward way is to compare the dimension similar to the process we did in part a). Suppose A is a 1×4 matrix, and $A^T a 4 \times 1$ matrix. The null space of A is zero unless the column space is identical zero. On the other hand, $N(A^T A)$ is 4×4 , with rank 1, the dimension of $N(A^T A)$ is at least 3 which does not match up the dimension of N(A).

We can also express $A^T A x = 0$ for some vector x. Similarly, $A^T y = 0$ for some vector y by the definition of being in the null space.

The null space of $A^T A$ contains vectors that also belong to the null space of A^T since any vector in the null space of A^T will also be in the null space of $A^T A$ due to the multiplication by A, but it's not necessarily the case that they're equal.

For them to be equal, it would mean that every vector x such that $A^T A x = 0$ would also satisfy $A^T x = 0$. and this is only going to hold if A has full column rank.

Problem 5. If P is the plane of vectors in \mathbb{R}^4 satisfying $x_1 + x_2 + x_3 + x_4 = 0$, write a basis for P^{\perp} . Construct a matrix that has P as its null space.

The equation $x_1 + x_2 + x_3 + x_4 = 0$ can be rewritten in the matrix form

$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0$$

Thus P is the null space of the 1×4 matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}.$$

This implies that P^{\perp} is the row space of A. Obviously, a basis of P^{\perp} is given by the vector

$$\mathbf{v} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}.$$

Problem 6. Suppose that A is a symmetric matrix, i.e., $A = A^T$.

- a) Show that the column space of A is perpendicular to the null space of A. In which case $C(A) = \text{row space}(A^{\top}) = \text{row space}(A)$. Now, By the definition of the null space, N(A) contains all vectors v such that Av = 0. Letting a_1, \ldots, a_n be the rows (and columns) of A, matrix multiplication tells us that $a_i \cdot v = 0$ for each $i = 1, \ldots, n$. Thus any vector $v \in N(A)$ is orthogonal to C(A). It follows that $C(A) \perp N(A)$.
- b) If $A\tilde{x} = 3\tilde{x}$ and $A\tilde{z} = 5\tilde{z}$, show that $\tilde{x}^T\tilde{z} = 0$.

Let's start by considering:

Because $A = A^T$

$$Ax = 3x \Rightarrow A^T x = 3x$$

Similarly,

$$Az = 5z \Rightarrow A^T z = 5z$$

Now, take the dot product of the equations we have:

$$\begin{aligned} x^TAz &= x^TA^Tz = (Ax)^Tz = (3x)^Tz = 3x^Tz \\ x^TAz &= 5x^Tz \end{aligned}$$

So we have

$$3x^T z = 5x^T z$$

This implies that

 $x^T z = 0$

Problem 7. If a matrix P satisfies $P^2 = P$, it is called a projection. If in addition it satisfies $P^T = P$, then it is called an orthogonal projection.

a) Show that if P is an orthogonal projection, then (I - P) is also an orthogonal projection.

Now, let's consider $(I - P)^2$:

$$(I - P)^2 = (I - P)(I - P)$$

= $I^2 - IP - PI + P^2$
= $I - 2P + P^2$
= $I - 2P + P$ (since $P^2 = P$ for an orthogonal projection)
= $I - P$

So, we have shown that $(I - P)^2 = (I - P)$, which satisfies the property of an orthogonal projection.

Next, let's consider $(I - P)^T$:

$$(I - P)^T = (I - P)^T$$

= $I^T - P^T$
= $I - P$ (since $P^T = P$ for an orthogonal projection)

So, we have shown that $(I - P)^T = (I - P)$, which also satisfies the property of an orthogonal projection.

Hence, (I-P) is an orthogonal projection if P is an orthogonal projection.

b) Show that if P is an orthogonal projection, then for any vectors \vec{u} and \vec{v} , the vectors $P\vec{u}$ and $(I - P)\vec{v}$ are orthogonal, i.e., $(P\vec{u})^T(I - P)\vec{v} = 0$.

To show that Pu and (I - P)v are orthogonal for any vectors u and v, we need to show that their dot product is zero.

Consider the dot product of Pu and (I - P)v:

$$(Pu)^{T}(I - P)v = u^{T}P^{T}(I - P)v \quad (\text{since } (AB)^{T} = B^{T}A^{T})$$
$$= u^{T}P^{T}v - u^{T}P^{T}Pv$$
$$= u^{T}Pv - u^{T}P^{2}v \quad (\text{since } P^{T} = P \text{ for an orthogonal projection})$$
$$= u^{T}Pv - u^{T}Pv$$
$$= 0$$

So, we have shown that the dot product of Pu and (I - P)v is zero, implying that they are orthogonal.

c) Show that for any vector \vec{v} , $||P\vec{v}|| \le ||\vec{v}||$.

For any vector v, we know that P is an orthogonal projection, so \mathbf{Pv} is the projection of v onto the subspace spanned by the columns of P. As a result, we can express v as follows:

$$v = Pv + (I - P)v$$

Because this is an orthogonal projection, we know that the Pythagorean Theorem can be applied here:

$$\begin{aligned} ||\vec{v}||^2 &= ||P\vec{v}||^2 + ||(I-P)\vec{v}||^2 \\ ||\vec{v}||^2 &\ge ||P\vec{v}||^2 \Rightarrow ||P\vec{v}|| \le ||\vec{v}|| \end{aligned}$$

as desired.

Problem 8. Project the vector $b = \begin{bmatrix} 4\\4\\6 \end{bmatrix}$ onto the column space of the matrix $A = \begin{bmatrix} 1 & 1\\1 & 1\\0 & 1 \end{bmatrix}$. Find the vector $e = b - b^*$ where b^* is the projection of b onto the column space

column space.

To project the vector b onto the column space of matrix A, we need to find

the projection matrix P and then compute the projection $b^* = Pb$.

The projection matrix onto the column space of A is given by $P = A(A^T A)^{-1} A^T$. First, let's compute $A^T A$:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$$

Now, let's compute $(A^T A)^{-1}$:

$$(A^T A)^{-1} = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3/2 & -1 \\ -1 & 1 \end{bmatrix}$$

Then, we have $P = A(A^T A)^{-1} A^T$:

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3/2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Now, let's compute $b^* = Pb$:

$$b^* = \begin{bmatrix} 1/2 & 1/2 & 0\\ 1/2 & 1/2 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4\\ 4\\ 6 \end{bmatrix} = \begin{bmatrix} 4\\ 4\\ 6 \end{bmatrix}$$

Finally, we compute the error vector $e = b - b^*$:

$$e = \begin{bmatrix} 4\\4\\6 \end{bmatrix} - \begin{bmatrix} 4\\4\\6 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

So, the projection of b onto the column space of A is $b^* = \begin{bmatrix} 4\\4\\6 \end{bmatrix}$ and the vector

 $e = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$