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Problem 1. Give a reason or a counterexample for the following statements:

a) A and AT have the same number of pivots.
True. The number of pivots of A is its column rank, r. We know that
the column rank of A equals the row rank of A, which is the column rank
of AT . Hence, AT must have the same number of pivots as A.

b) A and AT have the same left null space.
False.

Counterexample: Take any 1 × 2 matrix, A =
[
a b

]
. The left nullspace

of A contains vectors in R, while the left nullspace of AT , which is the
right nullspace of A, contains vectors in R2, so they cannot be the same.

c) If the row space equals the column space then A = AT .
False.

Counterexample: Let A =

(
1 2
3 4

)
. Here, the row space and the column

space are both equal to all of R2 (since A is invertible), but A ̸= AT .

d) If AT = −A then the row space of A equals the column space.
True. The row space of A equals the column space of AT , which for
this particular A equals the column space of −A. Since A and −A have
the same fundamental subspaces, by part (b) of the previous question, we
conclude that the row space of A equals the column space of A.

Problem 2. Fredholm alternative: The equation Ax̃ = b̃ has a solution if and
only if b̃ is perpendicular to N(AT ).

Proof.

⇒ If Ax = b has a solution, then b is perpendicular to N(AT ).
If Ax = b has a solution, it means that b lies in the column space of A. Since

any vector in the column space of A is perpendicular to any vector in N(AT ),
b must be perpendicular to N(AT ).
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⇐ If b is perpendicular to N(AT ), then Ax = b has a solution.
If b is perpendicular to N(AT ), it means that b lies in the column space of

A. Consequently, b can be expressed as a linear combination of the columns of
A, i.e., b = Ax for some x. Thus, the equation Ax = b has a solution.

Therefore, we have proven both directions of the Fredholm alternative The-
orem.

Problem 3. Suppose that A is 3 × 4 and B is 4 × 5 and AB = 0. So N(A)
contains C(B). Deduce from the dimensions of N(A) and C(B) that rank(A)+
rank(B) ≤ 4.

By the fundamental theorem of linear algebra, the dimension of N(A) is

N(A) = 4− rank(A)

The dimension of C(B) is rank(B) since C(B) is spanned by the columns of B.
Given that C(B) ⊆ N(A), we have:

rank(B) ≤ 4− rank(A)

Rearranging this inequality, we get:

rank(A) + rank(B) ≤ 4

Therefore, we have deduced from the dimensions of N(A) and C(B) that
rank(A) + rank(B) ≤ 4.

Problem 4. Prove or find a counterexample:

a) C(ATA) = C(A).

False.

Counterexample, consider the case of where A is 1 × 4 matrix. Then
dimC(ATA) = 1, which does not match to the dimension of C(A) = 4,
and thus C(ATA) ̸= C(A).

b) C(ATA) = C(AT ).

True.

Suppose AT is a m × n matrix. Firstly, C(ATA) ∈ C(AT ) because any
column in C(ATA) is a linear combination of columns in C(AT ), and so
every vector in C(ATA) is in the vector space of C(AT ).

We then go on with the examination of the dimension applying the Fun-
damental Theorem of Linear Algebra:

dimC(ATA) + dimN(ATA) = n

Then, also notice:
dimC(AT ) + dimN(A) = n
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because they are orthogonal complement, the column space of A trans-
poses the null space of A.

dimC(A) + dimN(A) = n

As a result,
dimC(ATA) = C(AT )

c) N(ATA) = N(AT ).

False.

The most straightforward way is to compare the dimension similar to the
process we did in part a). Suppose A is a 1 × 4 matrix, and ATa4 × 1
matrix. The null space of A is zero unless the column space is identical
zero. On the other hand, N(ATA) is 4× 4, with rank 1, the dimension of
N(ATA) is at least 3 which does not match up the dimension of N(A).

We can also express ATAx = 0 for some vector x. Similarly, AT y = 0 for
some vector y by the definition of being in the null space.

The null space of ATA contains vectors that also belong to the null space
of AT since any vector in the null space of AT will also be in the null space
of ATA due to the multiplication by A, but it’s not necessarily the case
that they’re equal.

For them to be equal, it would mean that every vector x such that ATAx =
0 would also satisfy ATx = 0. and this is only going to hold if A has full
column rank.

Problem 5. If P is the plane of vectors in R4 satisfying x1+x2+x3+x4 = 0,
write a basis for P⊥. Construct a matrix that has P as its null space.

The equation x1 + x2 + x3 + x4 = 0 can be rewritten in the matrix form

[
1 1 1 1

] 
x1

x2

x3

x4

 = 0.

Thus P is the null space of the 1× 4 matrix

A =
[
1 1 1 1

]
.

This implies that P⊥ is the row space of A. Obviously, a basis of P⊥ is given
by the vector

v =


1
1
1
1

 .
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Problem 6. Suppose that A is a symmetric matrix, i.e., A = AT .

a) Show that the column space of A is perpendicular to the null space of A.

In which case C(A) = row space(A⊤) = row space(A). Now, By the
definition of the null space, N(A) contains all vectors v such that Av = 0.
Letting a1, . . . , an be the rows (and columns) of A, matrix multiplication
tells us that ai · v = 0 for each i = 1, . . . , n. Thus any vector v ∈ N(A) is
orthogonal to C(A). It follows that C(A) ⊥ N(A).

b) If Ax̃ = 3x̃ and Az̃ = 5z̃, show that x̃T z̃ = 0.

Let’s start by considering:

Because A = AT

Ax = 3x ⇒ ATx = 3x

Similarly,
Az = 5z ⇒ AT z = 5z

Now, take the dot product of the equations we have:

xTAz = xTAT z = (Ax)T z = (3x)T z = 3xT z

xTAz = 5xT z

So we have
3xT z = 5xT z

This implies that
xT z = 0

Problem 7. If a matrix P satisfies P 2 = P , it is called a projection. If in
addition it satisfies PT = P , then it is called an orthogonal projection.

a) Show that if P is an orthogonal projection, then (I−P ) is also an orthog-
onal projection.

Now, let’s consider (I − P )2:

(I − P )2 = (I − P )(I − P )

= I2 − IP − PI + P 2

= I − 2P + P 2

= I − 2P + P (since P 2 = P for an orthogonal projection)

= I − P

So, we have shown that (I − P )2 = (I − P ), which satisfies the property
of an orthogonal projection.
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Next, let’s consider (I − P )T :

(I − P )T = (I − P )T

= IT − PT

= I − P (since PT = P for an orthogonal projection)

So, we have shown that (I − P )T = (I − P ), which also satisfies the
property of an orthogonal projection.

Hence, (I−P ) is an orthogonal projection if P is an orthogonal projection.

b) Show that if P is an orthogonal projection, then for any vectors u⃗ and v⃗,
the vectors Pu⃗ and (I − P )v⃗ are orthogonal, i.e., (Pu⃗)T (I − P )v⃗ = 0.

To show that Pu and (I −P )v are orthogonal for any vectors u and v, we
need to show that their dot product is zero.

Consider the dot product of Pu and (I − P )v:

(Pu)T (I − P )v = uTPT (I − P )v (since (AB)T = BTAT )

= uTPT v − uTPTPv

= uTPv − uTP 2v (since PT = P for an orthogonal projection)

= uTPv − uTPv

= 0

So, we have shown that the dot product of Pu and (I − P )v is zero,
implying that they are orthogonal.

c) Show that for any vector v⃗, ||P v⃗|| ≤ ||v⃗||.
For any vector v, we know that P is an orthogonal projection, so Pv is
the projection of v onto the subspace spanned by the columns of P . As a
result, we can express v as follows:

v = Pv + (I − P )v

Because this is an orthogonal projection, we know that the Pythagorean
Theorem can be applied here:

||v⃗||2 = ||P v⃗||2 + ||(I − P )v⃗||2

||v⃗||2 ≥ ||P v⃗||2 ⇒ ||P v⃗|| ≤ ||v⃗||
as desired.

Problem 8. Project the vector b =

44
6

 onto the column space of the matrix

A =

1 1
1 1
0 1

. Find the vector e = b− b∗ where b∗ is the projection of b onto the

column space.
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To project the vector b onto the column space of matrix A, we need to find
the projection matrix P and then compute the projection b∗ = Pb.

The projection matrix onto the column space ofA is given by P = A(ATA)−1AT .
First, let’s compute ATA:

[
1 1 0
1 1 1

]1 1
1 1
0 1

 =

[
2 2
2 3

]

Now, let’s compute (ATA)−1:

(ATA)−1 =

[
2 2
2 3

]−1

=

[
3/2 −1
−1 1

]
Then, we have P = A(ATA)−1AT :

P =

1 1
1 1
0 1

[
3/2 −1
−1 1

] [
1 1 0
1 1 1

]
=

1/2 1/2 0
1/2 1/2 0
0 0 1


Now, let’s compute b∗ = Pb:

b∗ =

1/2 1/2 0
1/2 1/2 0
0 0 1

44
6

 =

44
6


Finally, we compute the error vector e = b− b∗:

e =

44
6

−

44
6

 =

00
0



So, the projection of b onto the column space of A is b∗ =

44
6

 and the vector

e =

00
0

.
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