Math 3406 HW3

Pengfei Zhu

February 7, 2024

Problem 1. Show that the inverse of a lower triangular $m \times m$ matrix is lower triangular.

Proof. Proof by induction.

Suppose there is the lower triangular matrix A, and its inverse matrix B.

Base case (n = 2): Consider a 2 × 2 matrix. Note that AB = I. Therefore, $a_{11}b_{12} + a_{12}b_{22} = 0$. However, we know that $a_{12} = 0$ because the matrix is lower triangular. Therefore, $a_{11}b_{12} = 0$. Note that a_{11} cannot equal zero as a leading coefficient; therefore, b_{12} must be zero for the statement AB = I to be generally true. Therefore, B must also be lower triangular.

Now, consider an $n \times n$ matrix A and its inverse B. Any column j except j = n, we have $0 = \sum_{i=1}^{n} a_{ij}b_{in}$. However, a_{nn} should be the only non-zero entry of A in this sum, because otherwise, matrix A will have linearly dependent vectors which will make the dimension less than m. Thus $0 = a_{nn}b_{in}$. Since a_{nn} is not zero, it must be that b_{in} is always zero for $i \neq n$.

Since A and B are inverses, AB = BA = I. Therefore, considering BA = I, we can similarly multiply row *i* of B with column 1 of A. For all $i \neq 1$, we know that $0 = \sum_{i=1}^{n} a_{ij}b_{in} = a_{11}b_{1j}$. Since a_{11} is not zero, it must be that $b_{1j} = 0$.

By induction, the inverse of A without the first column and row is lower triangular. We have shown that the first column and last rows satisfy the conditions for lower triangular. Therefore, the inverse of an $n \times n$ lower triangular matrix is lower triangular.

Proof. Let $A = [x, \ldots, x_n]$, where each x_k is an element in column space of the matrix A, and we know that $A^{-1}A = I = [e_1 \ldots e_n]$. Now we consider process of row reduction from matrix A to I,

$$A^{-1}A = E_n E_{n-1}, \dots, E_1 A = I$$

To reduce matrix A to identity, observe that we only need to care about the element under the diagonal matrix. since e_k has only 0s above the k-th row and A is lower triangular, and $A^{-1}x_k = e_k$, then x_k has only 0s above the k-th row. This is true for all $1 \le k \le n$, so since $A = [x_1 \dots x_n]$, then A^{-1} is lower triangular, too.

Problem 2. If the null space of a matrix A, N(A), is given by all multiples $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

of $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, what is R and what is its rank?

Suppose we have matrix A in row reduced echelon form. We observe that in the null space, there are two entries x_2 and x_4 equal to 1, we know there is a free variable. Let x_4 be the free variable:

$$\begin{bmatrix} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

From above, we can manipulate to make the multiplication work:

$$x_1 = -2x_4$$
$$x_2 = -x_4$$
$$x_3 = -x_4$$

and so, we get:

$$R = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Given that the null space of A is spanned by \vec{x} , by definition, $A\vec{x} = \vec{0}$. There must 4 columns in A for matrix multiplication to be reasonable. So there is maximal column rank of 4, and there is only 1 basis in null space which span A, so N(A) = 0. By the fundamental theorem of Linear Algebra(rank-nullity theorem), the rank r should be:

$$r = 4 - 1 = 3$$

Problem 3. Suppose you know that the 3×4 matrix A has the vector $\vec{s} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix}$

as the only special solution to $A\vec{x} = \vec{0}$.

a) What is the rank of A and the complete solution of $A\vec{x} = \vec{0}$?

The matrix A has only one free variable x_a and one free column, the 3rd column. The rank of A is rank(A) = number of pivot columns = 4-1=3.

The complete solution to
$$Ax = \mathbf{0}$$
 is $\begin{bmatrix} 3\\3\\1\\0 \end{bmatrix} x_a = c \begin{bmatrix} 3\\1\\0 \end{bmatrix}$, where c is a scalar.

b) What is the exact row reduced echelon form R_0 of A?

Since
$$\mathbf{s} = \begin{bmatrix} 2\\3\\1\\0 \end{bmatrix}$$
, the exact reduced row echelon form R of A is given by
$$R = \begin{bmatrix} 1 & 0 & -2 & 0\\0 & 1 & -3 & 0 \end{bmatrix}$$

- $R = \begin{bmatrix} 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- c) How do you know that $A\vec{x} = \vec{b}$ can be solved for all \vec{b} ?

The matrix has full row rank r = 3, so there always is at least one solution (and since there is a free variable, so $Ax = \vec{b}$ can be solved for all $\vec{b} \in \mathbb{R}^3$

Problem 4. Decide whether the following list of vectors are linearly dependent or independent:

$$[A|\vec{0}] = \begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 3 & 1 & 2 & | & 0 \\ 3 & 1 & 2 & | & 0 \\ 2 & 3 & 1 & | & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

The only solution is the trivial solution $a_1 = a_2 = a_3 = 0$, so the vectors are linearly independent.

$$b) \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ -3 \end{bmatrix}, \begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix}$$
$$[B|\vec{0}] = \begin{bmatrix} 1 & 2 & -3 & | & 0\\ -3 & 1 & 2 & | & 0\\ 2 & -3 & 1 & | & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & | & 0\\ 0 & 1 & -1 & | & 0\\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Since there is a free variable at a_3 , so there are infinite many solutions, so these vectors are linearly dependent.

Problem 5. If $\vec{w_1}$, $\vec{w_2}$, $\vec{w_3}$ are independent vectors, show that the vectors $\vec{v_1} = \vec{w_1} + \vec{w_2}$, $\vec{v_2} = \vec{w_2} + \vec{w_3}$, and $\vec{v_3} = \vec{w_3} + \vec{w_1}$ are linearly independent.

To show that the vectors $\vec{v}_1 = \vec{w}_1 + \vec{w}_2$, $\vec{v}_2 = \vec{w}_2 + \vec{w}_3$, and $\vec{v}_3 = \vec{w}_3 + \vec{w}_1$ are linearly independent, we can use the definition of linear independence. Let's assume that there exist scalars c_1 , c_2 , and c_3 such that:

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$$

Now, substitute the expressions for \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 :

$$c_1(\vec{w}_1 + \vec{w}_2) + c_2(\vec{w}_2 + \vec{w}_3) + c_3(\vec{w}_3 + \vec{w}_1) = \vec{0}$$

Distribute the scalars:

$$c_1\vec{w}_1 + c_1\vec{w}_2 + c_2\vec{w}_2 + c_2\vec{w}_3 + c_3\vec{w}_3 + c_3\vec{w}_1 = \vec{0}$$

Now, group the terms:

$$(c_1 + c_3)\vec{w}_1 + (c_1 + c_2)\vec{w}_2 + (c_2 + c_3)\vec{w}_3 = \vec{0}$$

Since $\vec{w_1}, \vec{w_2},$ and $\vec{w_3}$ are independent, the coefficients must be zero:

 $c_1 + c_3 = c_1 + c_2 = c_2 + c_3 = 0$

Solving the above equality with matrix, we get:

$$\begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 1 & 1 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

These equations imply that $c_1 = c_2 = c_3 = 0$, which means that the vectors \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 are linearly independent.

Problem 6. Fill out the matrices so that they have rank 1:

$$A = \begin{bmatrix} a & b & c \\ d & \\ g & \end{bmatrix}, B = \begin{bmatrix} 9 \\ 1 \\ 2 & 6 & 3 \end{bmatrix}, C = \begin{bmatrix} a & b \\ c & \end{bmatrix}$$
$$A = \begin{bmatrix} a & b & c \\ d & \frac{bd}{a} & \frac{cd}{a} \\ g & \frac{bg}{a} & \frac{cg}{a} \end{bmatrix} \xrightarrow{r_3 \to r_3 - \frac{g}{a}r_1} \begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 3 & 9 & \frac{9}{2} \\ 1 & 3 & \frac{3}{2} \\ 2 & 6 & 3 \end{bmatrix} \xrightarrow{r_2 \to r_2 - \frac{1}{a}r_1} \begin{bmatrix} 1 & 3 & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$C = \begin{bmatrix} a & b \\ c & \frac{bc}{a} \end{bmatrix} \xrightarrow{r_2 \to r_2 - cr_1} \begin{bmatrix} 1 & \frac{b}{a} \\ 0 & 0 \end{bmatrix}$$

As shown on the above, rank is equal to the number of pivots in R.

Problem 7. Show that $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$ and that $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$. (Hint for the second statement: Show that $N(B) \subset N(AB)$ and hence the number of free variables of AB is greater or equal to the number of free variables of B.)

Proof.

1. $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$

We first show that $C(AB) \subseteq C(A)$. Let any $x \in C(AB)$, we can choose any vector y such that $x = (AB)y = A(By) \in C(A)$. Then, because $C(AB) \subseteq C(A)$, dim $C(AB) \leq \dim C(A)$. As a result, rank $(AB) \leq \operatorname{rank}(A)$.

2. $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$

We first show that $N(B) \subseteq N(AB)$. Let some $x \in N(B)$, we have $(AB)x = A(Bx) = A\mathbf{0} = \mathbf{0}$, such that $x \in N(AB)$. Then, because $N(B) \subseteq N(AB)$, the number of free variables of AB is greater or equal to the number of free variables of B. As a result, dim $N(B) \leq \dim N(AB)$. Thus, by the Fundamental Theorem of Linear Algebra, rank $(AB) = n - \dim N(AB) \leq n - \dim N(B) = \operatorname{rank}(B)$.

Alternatively, a more direct approach to rank $(AB) \leq \operatorname{rank}(B)$. Suppose we take transpose of AB, because $(AB)^T = B^T A^T$, we can consider rows of (AB) as a linear combination of rows of B, we claim that $C((AB)^T) \in C(B^T)$, and thus dim $C((AB)^T) \leq \dim C(B^T)$. Lastly, we know that dim $C(A) = \dim C(A)^T$. Therefore, we conclude that rank $(AB) \leq \operatorname{rank}(B)$.

In fact, with these two inequality holds, we can conclude that $\operatorname{Rank}(AB) \leq \min(\operatorname{Rank}(A), \operatorname{Rank}(B))$

Problem 8. Suppose that A, B are $n \times n$ matrices and that AB = I, i.e., B is the right inverse of A. We want to prove that B is also the left inverse of A, i.e., BA = I. (Hint: What is the rank of A?)

Following the hint, existence of a right inverse implies the existence of a left inverse when dealing with square matrices. Additionally, for a square matrix A, if it has a right inverse, then its rank must be full. (i.e., rank(A) = n).

Proof. Let's multiply the equation AB = I by A from the right side. We get

$$(AB)A = A \Rightarrow A(BA) = A \Rightarrow A(BA - I) = 0$$

Now, we can write (BA - I) as vectors in columns: v_1, v_2, \ldots, v_n , which allow us to express $Av_1 = 0, Av_2 = 0, \ldots, Av_n = 0$. Since rank(A) = n, there are *n* column vectors of A that span \mathbb{R}^n , and so they must be independent. Then Av = 0 implies v = 0. Hence, $v_1 = v_2 = \ldots = v_n = 0$, so BA - I is the zero matrix, and finally BA = I.