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Problem 1. Show that the inverse of a lower triangular m×m matrix is lower
triangular.

Proof. Proof by induction.
Suppose there is the lower triangular matrix A, and its inverse matrix B.
Base case (n = 2): Consider a 2× 2 matrix. Note that AB = I. Therefore,

a11b12+a12b22 = 0. However, we know that a12 = 0 because the matrix is lower
triangular. Therefore, a11b12 = 0. Note that a11 cannot equal zero as a leading
coefficient; therefore, b12 must be zero for the statement AB = I to be generally
true. Therefore, B must also be lower triangular.

Now, consider an n × n matrix A and its inverse B. Any column j except
j = n, we have 0 =

∑n
i=1 aijbin. However, ann should be the only non-zero

entry of A in this sum, because otherwise, matrix A will have linearly dependent
vectors which will make the dimension less than m. Thus 0 = annbin. Since ann
is not zero, it must be that bin is always zero for i ̸= n.

Since A and B are inverses, AB = BA = I. Therefore, considering BA = I,
we can similarly multiply row i of B with column 1 of A. For all i ̸= 1, we know
that 0 =

∑n
i=1 aijbin = a11b1j . Since a11 is not zero, it must be that b1j = 0.

By induction, the inverse of A without the first column and row is lower
triangular. We have shown that the first column and last rows satisfy the con-
ditions for lower triangular. Therefore, the inverse of an n× n lower triangular
matrix is lower triangular.

Proof. Let A = [x, . . . , xn], where each xk is an element in column space of the
matrix A, and we know that A−1A = I = [e1 . . . en]. Now we consider process
of row reduction from matrix A to I,

A−1A = EnEn−1, . . . , E1A = I

To reduce matrix A to identity, observe that we only need to care about the
element under the diagonal matrix. since ek has only 0s above the k-th row
and A is lower triangular, and A−1xk = ek, then xk has only 0s above the k-th
row. This is true for all 1 ≤ k ≤ n, so since A = [x1 . . . xn], then A−1 is lower
triangular, too.
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Problem 2. If the null space of a matrix A, N(A), is given by all multiples

of


2
1
0
1

 , what is R and what is its rank?

Suppose we have matrix A in row reduced echelon form. We observe that
in the null space, there are two entries x2 and x4 equal to 1, we know there is
a free variable. Let x4 be the free variable:

10 1
0 0 1



2
1
0
1

 =

00
0


From above, we can manipulate to make the multiplication work:

x1 = −2x4

x2 = −x4

x3 = −x4

and so, we get:

R =

1 0 0 −2
0 1 0 −1
0 0 1 −1


Given that the null space of A is spanned by x⃗, by definition, Ax⃗ = 0⃗. There

must 4 columns in A for matrix multiplication to be reasonable. So there is
maximal column rank of 4, and there is only 1 basis in null space which span
A, so N(A) = 0. By the fundamental theorem of Linear Algebra(rank-nullity
theorem), the rank r should be:

r = 4− 1 = 3

Problem 3. Suppose you know that the 3×4 matrix A has the vector s⃗ =


2
3
1
0


as the only special solution to Ax⃗ = 0⃗.

a) What is the rank of A and the complete solution of Ax⃗ = 0⃗?

The matrix A has only one free variable xa and one free column, the 3rd
column. The rank of A is rank(A) = number of pivot columns = 4−1 = 3.

The complete solution to Ax = 0 is


2
3
1
0

xa = c


2
3
1
0

, where c is a scalar.
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b) What is the exact row reduced echelon form R0 of A?

Since s =


2
3
1
0

, the exact reduced row echelon form R of A is given by

R =

1 0 −2 0
0 1 −3 0
0 0 0 1


c) How do you know that Ax⃗ = b⃗ can be solved for all b⃗?

The matrix has full row rank r = 3, so there always is at least one solution
(and since there is a free variable, so Ax = b⃗ can be solved for all b⃗ ∈ R3

Problem 4. Decide whether the following list of vectors are linearly dependent
or independent:

a)

13
2

 ,

21
3

 ,

32
1


[A|⃗0] =

1 2 3
3 1 2
2 3 1

∣∣∣∣∣∣
0
0
0

 =

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
0
0
0


The only solution is the trivial solution a1 = a2 = a3 = 0, so the vectors are

linearly independent.

b)

 1
−3
2

 ,

 2
1
−3

 ,

−3
2
1


[B |⃗0] =

 1 2 −3
−3 1 2
2 −3 1

∣∣∣∣∣∣
0
0
0

 =

1 0 −1
0 1 −1
0 0 0

∣∣∣∣∣∣
0
0
0


Since there is a free variable at a3, so there are infinite many solutions, so

these vectors are linearly dependent.

Problem 5. If w⃗1, w⃗2, w⃗3 are independent vectors, show that the vectors
v⃗1 = w⃗1 + w⃗2, v⃗2 = w⃗2 + w⃗3, and v⃗3 = w⃗3 + w⃗1 are linearly independent.

To show that the vectors v⃗1 = w⃗1 + w⃗2, v⃗2 = w⃗2 + w⃗3, and v⃗3 = w⃗3 + w⃗1

are linearly independent, we can use the definition of linear independence. Let’s
assume that there exist scalars c1, c2, and c3 such that:

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗

Now, substitute the expressions for v⃗1, v⃗2, and v⃗3:
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c1(w⃗1 + w⃗2) + c2(w⃗2 + w⃗3) + c3(w⃗3 + w⃗1) = 0⃗

Distribute the scalars:

c1w⃗1 + c1w⃗2 + c2w⃗2 + c2w⃗3 + c3w⃗3 + c3w⃗1 = 0⃗

Now, group the terms:

(c1 + c3)w⃗1 + (c1 + c2)w⃗2 + (c2 + c3)w⃗3 = 0⃗

Since w⃗1, w⃗2, and w⃗3 are independent, the coefficients must be zero:

c1 + c3 = c1 + c2 = c2 + c3 = 0

Solving the above equality with matrix, we get:1 0 1
1 1 0
0 1 1

∣∣∣∣∣∣
0
0
0

 =

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
0
0
0


These equations imply that c1 = c2 = c3 = 0, which means that the vectors

v⃗1, v⃗2, and v⃗3 are linearly independent.

Problem 6. Fill out the matrices so that they have rank 1:

A =

a b c
d
g

 , B =

 9
1
2 6 3

 , C =

[
a b
c

]

A =

a b c
d bd

a
cd
a

g bg
a

cg
a

 r3→r3− g
a r1−−−−−−−−→

r2→r2− d
a r1

a b c
0 0 0
0 0 0



B =

3 9 9
2

1 3 3
2

2 6 3

 r2→r2− 1
3 r1−−−−−−−−→

r3→r3− 2
3 r1

1 3 3
2

0 0 0
0 0 0


C =

[
a b
c bc

a

]
r2→r2−cr1−−−−−−−→

[
1 b

a
0 0

]
As shown on the above, rank is equal to the number of pivots in R.
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Problem 7. Show that rank(AB) ≤ rank(A) and that rank(AB) ≤ rank(B).
(Hint for the second statement: Show that N(B) ⊂ N(AB) and hence the
number of free variables of AB is greater or equal to the number of free variables
of B.)

Proof.
1. rank(AB) ≤ rank(A)

We first show that C(AB) ⊆ C(A). Let any x ∈ C(AB), we can choose any
vector y such that x = (AB)y = A(By) ∈ C(A). Then, because C(AB) ⊆ C(A),
dim C(AB) ≤ dim C(A). As a result, rank(AB) ≤ rank(A).

2. rank(AB) ≤ rank(B)
We first show that N(B) ⊆ N(AB). Let some x ∈ N(B), we have (AB)x =

A(Bx) = A0 = 0, such that x ∈ N(AB). Then, because N(B) ⊆ N(AB), the
number of free variables of AB is greater or equal to the number of free variables
of B. As a result, dim N(B) ≤ dim N(AB).Thus, by the Fundamental Theorem
of Linear Algebra, rank(AB) = n− dim N(AB) ≤ n− dim N(B) = rank(B).

Alternatively, a more direct approach to rank(AB) ≤ rank(B). Suppose we
take transpose of AB, because (AB)T = BTAT , we can consider rows of (AB) as
a linear combination of rows of B, we claim that C((AB)T ) ∈ C(BT ), and thus
dim C((AB)T ) ≤ dim C(BT ). Lastly, we know that dim C(A) = dim C(A)T .
Therefore, we conclude that rank(AB) ≤ rank(B).

In fact, with these two inequality holds, we can conclude that Rank(AB) ≤
min(Rank(A),Rank(B))

Problem 8. Suppose that A,B are n× n matrices and that AB = I, i.e., B
is the right inverse of A. We want to prove that B is also the left inverse of A,
i.e., BA = I. (Hint: What is the rank of A?)

Following the hint, existence of a right inverse implies the existence of a left
inverse when dealing with square matrices. Additionally, for a square matrix A,
if it has a right inverse, then its rank must be full. (i.e., rank(A) = n).

Proof. Let’s multiply the equation AB = I by A from the right side. We get

(AB)A = A ⇒ A(BA) = A ⇒ A(BA− I) = 0

Now, we can write (BA − I) as vectors in columns: v1, v2, . . . , vn, which allow
us to express Av1 = 0, Av2 = 0, . . . , Avn = 0. Since rank(A) = n, there are
n column vectors of A that span Rn, and so they must be independent. Then
Av = 0 implies v = 0. Hence, v1 = v2 = . . . = vn = 0, so BA − I is the zero
matrix, and finally BA = I.
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