Math 3406 HW2

Pengfei Zhu

January 26, 2024

Problem 1: Find a 3×3 permutation matrix $P \neq I_3$ with $P^3 = I_3$. From problem, we can infer that $P^2 \neq I$, because

$$P^2 = P^3 \implies (P^2)I_3 = (P^2)P \implies I_3 = P,$$

which contradicts with the condition provided that $P \neq I_3$. Then

$$P^2 \neq I \implies P^T P^2 \neq P^T I \implies P \neq P^T.$$

As a result, P should be a non-symmetric permutation matrix, so besides the identity matrix, the left non-symmetric matrix are:

$$P_1 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, P_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Problem 2: Show that any $n \times n$ matrix M can be written as M = S + A where $S^T = S$ and $A^T = -A$.

Let M be an $n \times n$ matrix. We can decompose M into a symmetric matrix S and an anti-symmetric matrix A:

$$M = \frac{1}{2}(M + M^{T}) + \frac{1}{2}(M - M^{T})$$

Let $S = \frac{1}{2}(M + M^T)$ and $A = \frac{1}{2}(M - M^T)$.

$$S^{T} = \left(\frac{1}{2}(M + M^{T})\right)^{T} = \frac{1}{2}(M^{T} + M) = \frac{1}{2}(M + M^{T}) = S$$

$$A^{T} = \left(\frac{1}{2}(M - M^{T})\right)^{T} = \frac{1}{2}(-M^{T} + M) = -\frac{1}{2}(M + M^{T}) = -A$$

Therefore, any $n \times n$ matrix M can be written as the sum of S and A, where $S^T = S$ and $A^T = -A$.

Problem 3: Find a condition on b_1 , b_2 , b_3 such that the systems below are solvable:

[1]	4	2	$\begin{bmatrix} x \end{bmatrix}$	$\begin{bmatrix} b_1 \end{bmatrix}$	1	4	[]	$\begin{bmatrix} b_1 \end{bmatrix}$
2	8	4	y =	b_2 ,	2	9	$\begin{vmatrix} x \\ u \end{vmatrix} =$	b_2
$\lfloor -1 \rfloor$	-4	-2	$\lfloor z \rfloor$	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix},$	[-1]	-4	$\lfloor y \rfloor$	b_3

a) For the first system, we combine matrix A and \vec{B} to get augmented matrix:

$$[A|\vec{B}] = \begin{bmatrix} 1 & 4 & 2 & b_1 \\ 2 & 8 & 4 & b_2 \\ -1 & -4 & -2 & b_3 \end{bmatrix}$$

Now, we perform row operations to transform matrix to its row reduced echelon form, and we get

$$\begin{bmatrix} 1 & 4 & 2 & b_1 \\ 0 & 0 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 + b_1 \end{bmatrix}$$

We found that on the second and third row, the leading coefficient are 0 and there is not pivot. As a result, in order for this linear system to have solution, we must have:

$$b_2 = 2b_1, b_3 = -b_1$$

b) Similar to part(a). For the second system, we combine matrix C and \vec{D} to get augmented matrix:

$$[C|\vec{D}] = \begin{bmatrix} 1 & 4 & b_1 \\ 2 & 9 & b_2 \\ -1 & -4 & b_3 \end{bmatrix}$$

Now, we perform row operations to transform matrix to its row reduced echelon form, and we get

$$\begin{bmatrix} 1 & 4 & b_1 \\ 0 & 1 & b_2 - 2b_1 \\ 0 & 0 & b_3 + b_1 \end{bmatrix}$$

We found that on the third row, the leading coefficient are 0 and there is not pivot. As a result, in order for this linear system to have solution, we must have:

$$b_3 = -b_1$$

Overall, one could argue that simply check whether two matrices' rank are equal to answer if there is a solution to the system.

Problem 4: Assume that V and W are subspaces of \mathbb{R}^n . Show that their intersection $V \cap W$ is a subspace of \mathbb{R}^n . Just check the definition of a subspace. By definition of a subspace,

- 1. for $v, w \in V \implies v + w \in V$
- 2. if λ is a scalar, and $v \in V$, then $\lambda v \in V$
- 3. $0 \in V$

Now suppose $v, w \in V \cap W$, then $v \in V$, $v \in W$, and $w \in V$, $w \in W$. Because $v \in V$ and $w \in V$, we can infer that $v + w \in V$. Similarly, because $v \in W$ and $w \in W$, we can infer that $v + w \in W$. That is to say, vector v + w is both in V and W, so $v + w \in V \cap W$.

Then, let a new vector $x \in V \cap W$, and let a constant $\lambda \in \mathbb{R}$. As stated previously, $x \in V$, and $x \in W$. By definition of subspace, $\lambda x \in V$ and $\lambda x \in W$. It follows that $\lambda x \in V \cap W$.

Lastly, As V and W are subspaces of \mathbb{R}^n , the zero vector **0** is in both V and W. Hence, the zero vector $\mathbf{0} \in V \cap W$.

By checking 3 conditions, we verify that $V \cap W$ is a subspace of \mathbb{R}^n .

Problem 5: Construct a matrix whose column space contains the vectors $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$ and whose null space contains $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.

To construct a matrix whose column space contains a given vector , set that vector a column of the matrix. Hence, let

$$A = \begin{bmatrix} 1 & 0 & a_1 \\ -1 & 3 & a_2 \\ 0 & 1 & a_3 \end{bmatrix}.$$

Then the column space of A already contains two vectors, and we just need to find a_1 , a_2 , a_3 such that (1, 1, 2) is in the nullspace. That is to say, we choose [1]

 $a_1, a_2, a_3 \text{ such that } A\begin{bmatrix} 1\\1\\2 \end{bmatrix} = 0. \text{ So we perform matrix multiplication:}$ $\begin{bmatrix} 0\\0\\0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a_1\\-1 & 3 & a_2\\0 & 1 & a_3 \end{bmatrix} \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \begin{bmatrix} 1+2a_1\\2+2a_2\\1+2a_3 \end{bmatrix}.$

Hence, we can pick $a_1 = -1/2$, $a_2 = -1$, and $a_3 = -1/2$, so the matrix is:

$$A = \begin{bmatrix} 1 & 0 & -1/2 \\ 1 & 3 & -1 \\ 5 & 1 & -1/2 \end{bmatrix}$$

Problem 6: For the two matrices below, find their row reduced echelon form.

1	2	2	4	6		[2	4 4 8	2]
1	2	3	6	9	,	0	4	4
0	0	1	2	3		0	8	8

Circle the pivots, find the special solution for each free variable, and describe every solution of the system $A\vec{x} = \vec{0}$. Write A in the form A = CR.

a) For the first matrix,

$\begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{r_2 \to r_2 - r_1} \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{r_3 \to r_3 - r_2}_{r_1 \to r_1 - 2r_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$2 \\ 2 \\ 0$	$2 \\ 3 \\ 1$	$4 \\ 6 \\ 2$	$\begin{bmatrix} 6\\9\\3 \end{bmatrix}$	$\xrightarrow{r_2 \rightarrow r_2 - r_1}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$2 \\ 0 \\ 0$	$2 \\ 1 \\ 1$	$4 \\ 2 \\ 2$	$\begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix}$	$\xrightarrow[r_3 \to r_3 - r_2]{r_1 \to r_1 - 2r_2}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 2 \\ 0 \\ 0 \end{array} $	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{array}{c} 0 \\ 2 \\ 0 \end{array}$	$0 \\ 3 \\ 0$
--	---	---------------	---------------	---------------	---	---	---	---------------	---------------	---------------	---	---	---	--	---	--	---------------

The circled entries are the pivots, and we have one pivot in the first column and one in the third column. The free variables are x_2, x_4 and x_5 .

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 = -2x_2$$
$$x_3 = -2x_4 - 3x_5$$

The solution set for the system $A\vec{x} = \vec{0}$ is given by:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \\ -2x_4 - 3x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 0 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

The special solution for each free variable:

$$\begin{bmatrix} -2\\1\\0\\-2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\-2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\-3\\0\\1 \end{bmatrix}$$

Write A in the form A = CR.

$$A = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}$$

b) Now, for the second matrix B:

$$\begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{bmatrix} \xrightarrow[r_1 \to \frac{1}{2}r_1]{r_1 \to \frac{1}{2}r_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow[r_1 \to r_1 - 2r_2]{r_2 \to \frac{1}{4}r_2} \begin{bmatrix} (1) & 0 & -1 \\ 0 & (1) & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The circled entries are the pivots, and we have one pivot in the first column and one in the second column. The free variable is x_3 .

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$x_1 = x_3$$
$$x_2 = -x_3$$

The solution set for the system $B\vec{x} = \vec{0}$ is given by:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

The special solution for the free variable:

$$\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$$

Expressing the original matrices A and B in the form CR:

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 0 & 4 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

Problem 7: Show by example that the following statements are generally false:

a) The matrices A and A^T have the same null space.

Consider the matrix A:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

The null space of A is the set of all vectors \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$. In this case, the null space of A is $\operatorname{null}(A) = \operatorname{span}\left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$.

Now, let's find the null space of A^T :

$$A^T = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$

The null space of A^T is $\operatorname{null}(A^T) = \operatorname{span}\{ \begin{bmatrix} 0\\1 \end{bmatrix} \}.$

Since $\operatorname{null}(A)$ and $\operatorname{null}(A^T)$ are not the same, statement (a) is generally false.

b) A and A^T have the same free variables. Consider the matrix A:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

The free variable in this case is the second variable. However, in the transpose of A^T , the free variable would be the first variable. Thus, statement (b) is generally false.

c) If R is the row reduced echelon form of A, then R^T is the row reduced echelon form of A^T .

Consider the matrix A:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

The row reduced echelon form of A is:

$$R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

Now, the transpose of \mathbb{R}^T is:

$$R^T = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$

This is not the row reduced echelon form of A^T because the second column in R^T is not a unit column vector. Therefore, statement (c) is generally false.

Problem 8:

a) Construct a 2×2 matrix whose column space equals its null space. If the nullspace is equal to the column space, then the matrix must have m = n. By the rank-nullity theorem, n must also be an even number. Consider the matrix A where n = 2:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- (a) Column Space: The column space of A is the span of its column vectors. In this case, the second column is $\begin{bmatrix} 1\\0 \end{bmatrix}$.
- (b) Null Space: The null space of A is the set of all vectors that satisfy $A\vec{x} = \vec{0}$. For the matrix A, if we take $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, then $A\vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so \vec{x} is in the null space.
- b) Find all five 2×2 matrices that have entries 0 and 1 and that are in row reduced echelon form.

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$