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Problem 1: A system of linear equations cannot have precisely two solutions.
Let x⃗1 and x⃗2 be two solutions of Ax⃗ = b⃗. Find other solutions.

solution: Given that x⃗1 and x⃗2 are two solutions of Ax⃗ = b⃗, we can express
the system to be Ax⃗1 = Ax⃗2 = b⃗. Then for any λ ∈ (0, 1), λx⃗1 + (1− λ)x⃗2 will
be the solutions for this linear equation, reason shown as follows:

A(λx⃗1 + (1− λ)x⃗2) = λAx⃗1 + (1− λ)x⃗2 = λ⃗b+ (1− λ)⃗b = b⃗

and we know that λx⃗1 is different from x⃗1, same for x⃗2, and we can pick λ = 1/2
as an example:

A(
1

2
x⃗1 + (1− 1

2
)x⃗2) =

1

2
Ax⃗1 +

1

2
Ax⃗2 =

1

2
b⃗+

1

2
b⃗ = b⃗

Problem 2: Which numbers a would leave the matrix A with two independent
columns?

solution: For a 3 × 3 matrix to have two independent columns, one of
the columns must be linearly a linear combination of the other two linearly
independent columns .

A1 =

1 0 2
3 1 9
5 0 a


For this matrix, the third column

29
a

 since the first two column are not

scalar multiple or linear independent of each other, the third column should be
a linear combination of them, such linear combination can be 2v⃗1 + 3v⃗2, so a
should be equal to 10.

A2 =

1 4 7
2 5 8
3 6 a


again, similar to the first matrix, the first two column are not linear independent
of each other, the third column should be a linear combination of them, such
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linear combination can be −v⃗1 + 2v⃗2. We found that the if we take linear
combination, the third row’s left with 0, so a should be equal to 0.

A3 =

1 1 2
2 2 4
0 0 a


For this matrix, the first two columns are identical, so they are not linearly
independent. as not for last column to be linearly independent with the first
two columns, pick any a ̸= 0 will satisfy the condition.

Problem 3: Using Schwarz’s inequality prove the triangle inequality for vec-
tors in Rn

Proof. Let u and v be vectors in Rn. Schwarz’s Inequality states that for any
vectors u and v in Rn,

|u · v| ≤ ∥u∥∥v∥

Now, we want to prove the Triangle Inequality applying Schwarz’s Inequality:

||u+ v||2 = (u+ v, u+ v)

= (u, u) + (v, v) + 2Re(u, v)

≤ ||u||2 + ||v||2 + 2|(u, v)|
≤ ||u||2 + ||v||2 + 2||u|||v||
= (||u||+ ||v||)2

Taking square roots of both sides of the inequality above gives the triangle
inequality Therefore, ||u+ v|| ≤ ||u||+ ||v||

Problem 4: Consider the plane P spanned by the vectors v⃗1 =

 1
−1
0

 and

v⃗2 =

 1
0
−1

, and consider the vector b⃗ =

12
3

. Find the point on the plane that

is closest to the tip of the vector b⃗.
Suppose we have a vector b⃗∗ on the plane that intersect with vector b⃗ on

the plane, and another vector n⃗ orthogonal to the plane such that the vector
addition holds: b⃗ − b⃗∗ = n⃗ . Such vector n⃗ can be expressed as An⃗ = 0, where
A is spanned by vectors v⃗1 and v⃗2:[

1 −1 0
1 0 −1

]x1

x2

x3

 = 0
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x1

x2

x3

 = z

11
1


Then, we can assume that there exists a scalar t ∈ R such that

(⃗b− b⃗∗) = tn⃗

tn⃗ is the vector that is perpendicular to the plane and passes the tip of the
vector b⃗. Then, by definition of orthogonality, we know that the dot product of
b⃗∗ · n⃗ = 0. Therefore, we have:

(⃗b− b⃗∗) · n⃗ = tn⃗ · n⃗

b⃗ · n⃗ = tn⃗ · n⃗

b⃗ · n⃗ = t||n||2

t =
b⃗ · n⃗
||n||2

tn⃗ =
b⃗ · n⃗
||n||2

n⃗

tn⃗ =
1 + 2 + 3

3

11
1

 =

22
2


so here we find the tn⃗ which is the the perpendicular component, we left to find
b⃗∗ on the plane, which is:

b⃗∗ = b⃗− tn⃗ =

12
3

−

22
2

 =

−1
0
1


Another way to approach this problem involving projection. The projection

works the same way as the approach listed above, but it can be applied in
much more occasions (higher dimensions). Suppose we have the same definition

of variables, that is b⃗∗ as a vector on the plane A, and the vector n⃗ that is
orthogonal to the plane. Similarly, We can write as b⃗ − b⃗∗ ⊥ C(A), which can

also easily seen that b⃗− b⃗∗ ∈ N(AT ). Furthermore, since b⃗∗ as a vector on the

plane, b⃗∗ ∈ C(A), and so we can have some vector x⃗ such that b∗ = Ax. Then,

given b⃗− b⃗∗ ∈ N(AT ), we have:

0 = AT (b− b∗) = AT b−ATAx⃗ → ATAx⃗ = AT b

In fact, this is called the Normal Equations. Then:

x = (ATA)−1AT b

b∗ = Ax = A(ATA)−1AT b
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=
1

3

 1 1
0 −1
−1 0

[
2 −1
−1 2

] [
1 0 −1
1 −1 0

]12
3


=

1

3

 2 −1 −1
−1 2 −1
−1 −1 2

12
3

 =

−1
0
1


As desired.

Problem 5: Completing a 2 × 2 matrix to have
rank one: [

3 6
5 10

]
To make it a rank-one matrix, we need the second column to be a scalar multiple
of the first column, so that there is only 1 linearly independent column. Choose
λ = 2

orthogonal columns: [
5 8
8 −5

]
For columns to be orthogonal, the dot product of the columns should be zero.
Choose -5

rank 2: [
2 1
3 6

]
As long as two columns are linearly independent, the rank C(A) will be 2.

A2 = I : [
3 4
−2 −3

]
[
a c
b d

]2
=

[
a2 + bc ac+ bd
ab+ cd bc+ d2

]
=

[
1 0
0 1

]
To get the identity matrix, either a = −d, so a2 + bc = 1 solve for the

equation and we get that the b should be equal to -2

Problem 6: Consider the matrix

A =

 1 1 0
5 4 1
−2 2 0


Find the three elimination matrices E21, E31, E32 such that E32E31E21A =

U where U is in upper triangular form.

E21

xy
z

 =

 x
y − 5x

z

 =

 1 0 0
−5 1 0
0 0 1

E21A =

 1 1 0
0 −1 1
−2 2 0


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E31

xy
z

 =

 x
y

z + 2x

 =

1 0 0
0 1 0
2 0 1

E31E21A =

1 1 0
0 −1 1
0 4 0


E32

xy
z

 =

 x
1
4Z

y + 1
4Z

 =

1 0 0
0 0 1

4
0 1 1

4

U = E32E31E21A =

1 1 0
0 1 0
0 0 1


As shown, U is in upper triangular form.

Problem 7: Suppose A is an invertible matrix, and you exchange row 1 and
row 2 to get a matrix B. Is the matrix B invertible? If yes, how would you find
B−1 in terms of A−1?

Since B is obtained from A by exchanging the first two rows, we know

B = E21A

with

E21 =


0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


So, BA−1E21 = E21AA−1E21 = E21E21 = I and hence B−1 = A−1E21. In

other words, B−1 is obtained from A−1 by exchanging the first two columns.

Problem 8: Suppose a 4 × 4 matrix A contains in every row the numbers
0, 1, 2,−3 in some order. Can it be invertible?

No, it can’t be invertible. Since every row the number is in different order, it
is guaranteed that every element from same column adds up to 0, which means

the null space is not just 0. For example, multiply matrix by the vector


1
1
1
1


will result in 0. From class, we learnt that matrix A is invertible if and only if
the null space N(A) = 0, which has shown not the case, so the matrix A is not
invertible.
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